Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Técnicas de Construção Civil e Construção de Edifícios - Apostilas - Engenharia de Controle Part1, Notas de estudo de Automação

Apostilas de Engenharia de Controle e Automação sobre o estudo das Técnicas de Construção Civil e Construção de Edifícios, Levantamento topográfico de lotes urbanos, Terraplenagem, Instalação da obra, Elementos de alvenaria, Argamassa preparo e aplicação.

Tipologia: Notas de estudo

2013
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 04/06/2013

Rafael86
Rafael86 🇧🇷

4.6

(170)

250 documentos

1 / 101

Documentos relacionados


Pré-visualização parcial do texto

Baixe Técnicas de Construção Civil e Construção de Edifícios - Apostilas - Engenharia de Controle Part1 e outras Notas de estudo em PDF para Automação, somente na Docsity! TÉCNICAS DE CONSTRUÇÃO CIVIL E CONSTRUÇÃO DE EDIFÍCIOS ARIDI SAIR 7 ha UNID | » a À q N | o Tasé Antonio de Milito PREFÁCIO Estas anotações de aulas, compiladas em forma de apostila, tem o intuito de facilitar a consulta e o acompanhamento da disciplina de Técnicas das Construções Civis e Construções de Edifícios da Faculdade de Ciências Tecnológicas da P.U.C. Campinas e Faculdade de Engenharia de Sorocaba. Não houve pretensão de escrevê-la para ser publicada como livro, mas sim reuniram coletânea, conhecimentos extraídos de livros, catálogos, informativos, pesquisas, palestras, seminários, etc... constantes da bibliografia final. Contém um bom número de exemplos e informações gerais úteis para que, ao projetar ou edificar, se esteja atento para não cometer os erros mais graves, que são encontrados em grande quantidade, principalmente nas habitações. Espera-se que, de alguma forma, se contribua para acrescentar algo de novo aos não iniciados e se mostre a importância do assunto, para que nos futuros projetos, seja dedicado algum tempo, com cuidados necessários às técnicas das edificações, contribuindo para tornar melhor e mais amena a vida, o que constitui o principal objetivo da ciência. JOSÉ ANTONIO DE MILITO 10.1.3 Preparação da superfície ...209 10.1.4 Esquema de pintura ...209 10.1.5 Cuidado na aplicação das tintas ...211 10.1.6 Condições ambientais durante a aplicação ...214 10.1.7 Material de trabalho ...215 10.1.8 Rendimentos ...217 10.2 Vidro ...217 10.2.1 Vidro temperado ...218 11 DETALHES DE OBRAS COM CONCRETO ARMADO 11.1 Materiais empregados em concreto armado ...223 11.2 Sistemas de fôrmas e escoramentos convencionais ...229 11.3 Recomendações quanto ao manuseio e colocação das barras de aço ...245 11.4 Como se prepara em bom concreto ...248 11.4.4 Aplicação do concreto em estruturas ...253 11.4.6 Cura ...259 11.4.7 Desforma ...260 11.4.8 Consertos de falhas ...260 12 ESCADAS 12.1 Condições gerais, normas e terminologia ...265 12.2 Cálculos e desenhos práticos de escadas ...270 12.3 Escadas com seções em curva ...273 12.4 Escadas de segurança ...274 12.5 Como executar as escadas na obra ...275 ANEXOS Ferramentas ...279 EPI - Equipamentos de proteção individual ...281 Pregos na escala 1:1 ...282 Tabelas para obras em concreto armado ...285 Tabelas de pesos específicos de materiais usuais ...288 Tabelas para caibros e terças ...292 Referências Bibliográficas ...295 TÉCNICAS DE CONSTRUÇÃO CIVIL E CONSTRUÇÃO DE EDIFÍCIOS ANOTAÇÕES DE AULA 01 ESTUDOS PRELIMINARES 4 Este modelo de questionário poderá ser preenchido parcialmente durante a entrevista. Não é possível seu preenchimento completo, pois é útil e indispensável uma visita ao terreno, antes de iniciarmos o projeto. 1.2 - EXAME LOCAL DO TERRENO Sem sabermos as características do terreno, é quase impossível executar-se um bom projeto. As características ideais de um terreno para um projeto econômico são: a) Não existir grandes movimentações de terra para a construção; b) Ter dimensões tais que permita projeto e construção de boa residência; c) Ser seco; d) Ser plano ou pouco inclinado para a rua; e) Ser resistente para suportar bem a construção; f ) Ter facilidade de acesso; g) Terrenos localizados nas áreas mais altas dos loteamentos; h) Escolher terrenos em áreas não sujeitas a erosão; i) Evitar terrenos que foram aterrados sobre materiais sujeitos a decomposição orgânica. Mas como nem sempre estas características são encontradas nos lotes urbanos, devemos levá-las em consideração quando da visita ao lote, levantando os seguintes pontos: a) Deve-se identificar no local o verdadeiro lote adquirido segundo a escritura, colhendo-se todas as informações necessárias; b) Verificar junto a Prefeitura da Municipalidade, se o loteamento onde se situa o terreno, foi devidamente aprovado e está liberado para construção; c) Números das casa vizinhas ou mais próximas do lote; d) Situação do lote dentro da quadra, medindo-se a distância da esquina ou construção mais próxima. e) Com bússola de mão, confirmar a posição da linha N-S. f) Verificar se existem benfeitorias.(água, esgoto, energia) g) Sendo o terreno com inclinação acentuada, em declive, verificar se existe viela- sanitária vizinha do lote, em uma das divisas laterais ou fundo; h) Verificar se passa perto do lote, linha de alta tensão, posição de postes, bueiros, etc... i) Verificar se existe faixa non edificandi .( de não construção) j) Verificar a largura da rua e passeio. Obs.: Todos esses dados poderão ser acrescidos no questionário anterior. Geralmente, estes dados colhidos na visita ao terreno não são os suficientes, e na maioria das vezes, devemos pedir previamente que se execute uma limpeza do terreno e um levantamento plani-altimétrico. 5 1.3 - LIMPEZA DO TERRENO Temos algumas modalidades para limpeza do terreno, que devemos levar em consideração e sabermos defini-las: 1.3.1 - Carpir - Quando a vegetação é rasteira e com pequenos arbustos, usando para tal, unicamente a enxada. 1.3.2 - Roçar - Quando além da vegetação rasteira, houver árvores de pequeno porte, que poderão ser cortadas com foice. 1.3.3 - Destocar - Quando houver árvores de grande porte, necessitando desgalhar, cortar ou serrar o tronco e remover parte da raiz. Este serviço pode ser feito com máquina ou manualmente. Os serviços serão executados de modo a não deixar raízes ou tocos de árvore que possam dificultar os trabalhos. Todo material vegetal, bem como o entulho terão que ser removidos do canteiro de obras. 1.4 - LEVANTAMENTO TOPOGRÁFICO DE LOTES URBANOS O levantamento topográfico é geralmente apresentado através de desenhos de planta com curavas de nível e de perfis. Deve retratar a conformação da superfície do terreno, bem como as dimensões dos lotes, com a precisão necessária e suficiente proporcionando dados confiáveis que, interpretados e manipulados corretamente, podem contribuir no desenvolvimento do projeto arquitetônico e de implantação (Pinto Jr.et al, 2001) 1.4.1 - MEDIDAS DO TERRENO (LEVANTAMENTO PLANIMÉTRICO) Executada a limpeza do terreno e considerando que os projetos serão elaborados para um determinado terreno, é necessário que se tenha as medidas corretas do lote, pois nem sempre as medidas indicadas na escritura conferem com as medidas reais. Apesar de não pretendermos invadir o campo da topografia, vamos mostrar em alguns desenhos, os processos mais rápidos para medir um lote urbano. Os terrenos urbanos, são geralmente de pequena área possibilitando, portando, a sua medição sem aparelhos ou processos próprios da topografia desde que se tenha uma referência (casa vizinha, esquina, piquetes etc). No entanto, casos mais complexos, sem referência, necessitamos de um levantamento executado por profissional de topografia. a) Lote regular Geralmente em forma de retângulo, bastando portanto medir os seus "quatro" lados, e usar o valor médio, caso as medidas encontradas forem diferentes as da escritura.(Figura 1.1). 6 Figura 1.1-Lote regular Obs. Para verificar se o lote está no esquadro, devemos medir as diagonais que deverão ser iguais. b) Lote irregular com pouco fundo Medir os quatro lados e as duas diagonais (Figura 1.2). Figura 1.2-Lote irregular com pouco fundo c) Lote irregular com muita profundidade Neste caso, a medição da diagonal se torna imperfeita devido a grande distância Convém utilizar um ponto intermediário "A" diminuindo assim o comprimento da diagonal (Figura 1.3). Figura 1.3-Lote irregular com muita profundidade 9 - 2 balizas - trena Figura 1.6-Clinômetro ou Nível de Abney (Borges, 1972) Coloca-se o clinômetro (Figura 1.8), na 1ª baliza a uma altura de 1,50m (ponto A). Inclina-se o tubo do clinômetro para avistarmos o ponto B. Pela ócula se vê a bolha e giramos o parafuso até colocá-la na vertical e produzirá sobre a graduação e leitura do ângulo α. Resta medir a distância horizontal "d" ou a inclinada "m". Figura 1.7-Clinômetro inclinado proporcionando a leitura (Borges, 1972) 10 Figura 1.8-Realização das medidas utilizando o Clinômetro (Borges, 1972) 1.5.2) Nível de bolha Materiais: - Nível de bolha; - 2 balizas; - régua - trena. Figura 1.9 Utilização do nível de bolha 11 1.5.3) Nível de mangueira O método da mangueira é um dos mais utilizados. Fundamenta-se no princípio dos vasos comunicantes, que nos fornece o nível. Este é o método que os pedreiros utilizam para nivelar a obra toda, desde a marcação da obra até o nivelamento dos pisos, batentes, azulejos etc... A mangueira deve ter pequeno diâmetro, parede espessa para evitar dobras e ser transparente. Para uma boa marcação ela deve estar posicionada entre as balizas, sem dobras ou bolhas no seu interior. A água deve ser colocada lentamente para evitar a formação de bolhas. Materiais: - Mangueira - 2 balizas - Trena Figura 1.10 - Processo da mangueira de nível Para facilitar a medição, podemos partir com o nível d'água em uma determinada altura "h" em uma das balizas, que será descontada na medida encontrada na segunda baliza. Fazemos isso para não precisarmos colocar o nível d'água direto no ponto zero (próximo do terreno), o que dificultaria a leitura e não nos forneceria uma boa medição. Exemplos de medição com mangueira: • Em terrenos com aclive • Em terrenos com declive TÉCNICAS DE CONSTRUÇÃO CIVIL E CONSTRUÇÃO DE EDIFÍCIOS ANOTAÇÕES DE AULA 02 T pr o N . ” > “as EA PRO ER. RABALHOS Per N / E PRELIMINARES 15 2 - TRABALHOS PRELIMINARES APÓS ESTUDAR ESTE CAPÍTULO; VOCÊ DEVERÁ SER CAPAZ DE: • Calcular os volumes de corte e aterro; • Realizar as compensações de volume; • Analisar e executar um canteiro de obras; • Realizar ou conferir a marcação de uma obra. 2.1 - TERRAPLENAGEM Efetuado o levantamento planialtimétrico, temos condições de elaborar os projetos e iniciar sua execução. Começamos pelo acerto da topografia do terreno, de acordo com o projeto de implantação e o projeto executivo. Podemos executar, conforme o levantamento altimétrico, cortes, aterros, ou ambos: 2.1.1 - Cortes: No caso de cortes, deverá ser adotado um volume de solo correspondente à área da seção multiplicada pela altura média, acrescentando-se um percentual de empolamento (Figura 2.1). O empolamento é o aumento de volume de um material, quando removido de seu estado natural e é expresso como uma porcentagem do volume no corte. Relacionamos na Tabela 2.1 alguns empolamentos. Tabela 2.1 - Relação de Empolamentos materiais % Argila natural 22 Argila escavada, seca 23 Argila escavada, úmida 25 Argila e cascalho seco 41 Argila e cascalho úmido 11 Rocha decomposta 75% rocha e 25% terra 50% rocha e 50% terra 25% rocha e 75% terra 43 33 25 Terra natural seca 25 Terra natural úmida 27 Areia solta, seca 12 Areia úmida 12 Areia molhada 12 Solo superficial 43 OBS.: Quando não se conhece o tipo de solo, podemos considerar o empolamento entre 30 a 40% 16 Vc = Ab . hm . 1,4 Sendo Ab = área de projeção do corte hm= altura média Figura 2.1 - Corte em terreno O corte é facilitado quando não se tem construções vizinhas, podendo faze-lo maior. Mas quando efetuado nas proximidades de edificações ou vias públicas, devemos empregar métodos que evitem ocorrências, como: ruptura do terreno, descompressão do terreno de fundação ou do terreno pela água. No corte os materiais são classificados em: - materiais de 1ªcategoria: terra em geral, piçarra ou argila, rochas em decomposição e seixos com diâmetro máximo de 15cm. - materiais de 2ª categoria: rocha com resistência à penetração mecânica inferior ao do granito. - Materiais de 3ª categoria: rochas com resistência à penetração mecânica igual ou superior ao granito. 2.1.2 - Aterros e reaterros: No caso de aterros, deverá ser adotado um volume de solo correspondente a área da seção multiplicada pela altura média, acrescentando em torno de 30% devido a contração considerada que o solo sofrerá, quando compactado (Figura 2.2). Va = Ab . hm . 1,3 Sendo Ab = área de projeção do corte hm= altura média Figura 2.2 - Aterro em terreno Para os aterros as superfícies deverão ser previamente limpas, sem vegetação nem entulhos. O material escolhido para os aterros e reaterros devem ser de preferência solos arenosos, sem detritos, pedras ou entulhos. Devem ser realizadas camadas sucessivas de no máximo 30 cm, devidamente molhadas e apiloadas manual ou mecanicamente. 19 Aproveitamento das chapas compensadas: Tabela 2.2 - Relação de materiais para execução de barracão para pequenas obras Quant. un Descrição 03 un Pontaletes ou caibros de 3,00m 03 un Pontaletes ou caibros de 3,50m 16 pç Chapas de compensado 6,0 ou 10,0mm 11 pç Telhas fibrocimento 4,0mm de 0,50x2,44 11 pç Telhas fibrocimento 4,0mm de 0,50x1,22 01 pç Viga 6x12 de 5,0m 60 m Sarrafo de 7,0cm 01 pç Cadeado médio 0,5 m Corrente 03 pç Dobradiças 0,5 kg Prego 15x15 0,3 kg Prego 18x27 2.3 - LOCAÇÃO DA OBRA Podemos efetuar a locação da obra, nos casos de obras de pequeno porte, com métodos simples, sem o auxílio de aparelhos, que nos garantam uma certa precisão. No entanto, os métodos descritos abaixo, em caso de obras de grande área, poderão acumular erros, sendo conveniente, portanto, o auxílio da topografia. Os métodos mais utilizados são: • Processo dos cavaletes. • Processo da tábua corrida (gabarito) 20 2.3.1 - Processo dos cavaletes Os alinhamentos são fixados por pregos cravados em cavaletes. Estes são constituídos de duas estacas cravadas no solo e uma travessa pregada sobre elas (Figura 2.4). Devemos sempre que possível, evitar esse processo, pois não nos oferece grande segurança devido ao seu fácil deslocamento com batidas de carrinhos de mão, tropeços, etc... Figura 2.4 - Cavalete Após distribuídos os cavaletes, previamente alinhados conforme o projeto, linhas são esticadas para determinar o alinhamento do alicerce e em seguida inicia-se a abertura das valas (Figura 2.5) 21 Figura 2.5 - Processo dos cavaletes 2.3.2 - Processo da tábua corrida (gabarito) Este método se executa cravando-se no solo cerca de 50cm, pontaletes de pinho de (3" x 3" ou 3" x 4") ou varas de eucalipto a uma distância entre si de 1,50m e a 1,20m das paredes da futura construção, que posteriormente poderão ser utilizadas para andaimes. Nos pontaletes serão pregadas tábuas na volta toda da construção (geralmente de 15 ou 20cm), em nível e aproximadamente 1,00m do piso (Figura 2.7). Pregos fincados na tábuas com distâncias entre si iguais às interdistâncias entre os eixos da construção, todos identificados com letras e algarismos respectivos pintados na face vertical interna das tábuas, determinam os alinhamentos (Figura 2.6). Nos pregos são amarrados e esticados linhas ou arames, cada qual de um nome interligado ao de mesmo nome da tábua oposta. Em cada linha ou arame está materializado um eixo da construção. Este processo é o ideal. Figura 2.6 - Marcação sobre gabarito A 24 Figura 2.11 - Traçado de curva pelo método das quatro partes (G.Baud,1976) 4 f , 4 f seguida em 23 1 222 2 1 ff tr r rf == + −= sendo: r = raio da curva t = tangente à curva (na intercessão da curva com a reta) Portanto, com o auxílio do gabarito, inicialmente devemos locar as fundações profundas do tipo estacas, tubulões ou fundações que necessitam de equipamentos mecânicos para a sua execução, caso contrário podemos iniciar a locação das obras pelo projeto de forma da fundação ("paredes"). 25 2.4.3 - Locação de estacas Serão feitas inicialmente a locações de estacas, visto que qualquer marcação das "paredes", irá ser desmarcada pelo deslocamento de equipamentos mecânicos. O posicionamento das estacas é feito conforme a planta de locação de estacas, fornecida pelo cálculo estrutural (Figura 2.12). A locação das estacas é definida pelo cruzamento das linhas fixadas por pregos no gabarito. Transfere-se esta interseção ao terreno, através de um prumo de centro (Figura 13). No ponto marcado pelo prumo, crava-se uma estaca de madeira (piquete), geralmente de peroba, com dimensões 2,5x2,5x15,0cm. Figura 2.12 - Projeto de locação de estacas 1 A 32 B C D E 26 Utilizando o gabarito, podemos passar todos os pontos das estacas para o terreno, utilizando como já descrito a linha o prumo de centro e estacas de madeira: Figura 2.13 - Locação da estaca Após a execução das estacas e com a saída dos equipamentos e limpeza do local podemos efetuar, com o auxílio do projeto estrutural de formas a locação das "paredes". 2.4.4 - Locação da Forma de Fundação "paredes" Devemos locar a obra utilizando os eixos, para evitarmos o acúmulo de erros provenientes das variações de espessuras das paredes (Figura 2.14). Em obras de pequeno porte ainda é usual o pedreiro marcar a construção utilizando as espessuras das paredes. No projeto de arquitetura adotamos as paredes externas com 25cm e as internas com 15cm, na realidade as paredes externas giram em torno de 26 a 27cm e as internas 14 a 14,5cm difícil de serem desenhadas a pena nas escalas usuais de desenho 1:100 ou 1:50, por isso da adoção de medidas arredondadas que acumulam erros. Hoje com o uso de softwares específicos ficou bem mais fácil. TÉCNICAS DE CONSTRUÇÃO CIVIL E CONSTRUÇÃO DE EDIFÍCIOS ANOTAÇÕES DE AULA 03 * FUNDAÇÕES 30 3 - FUNDAÇÕES CONVENCIONAIS APÓS ESTUDAR ESTE CAPÍTULO; VOCÊ DEVERÁ SER CAPAZ DE: • Determinar o número de furos de sondagem, bem como a sua localização; • Analisar um perfil de sondagem; • Saber escolher a fundação ideal para uma determinada edificação; • Especificar corretamente o tipo de impermeabilização a ser utilizada em alicerce; • Especificar o tipo de dreno e a sua localização. 3.1 - SONDAGENS Não querendo invadir o campo da Engenharia de Fundações, damos nestas anotações de aulas, um pequeno enfoque sobre fundações mais utilizadas em residências unifamiliares térreas e sobrados, ficando a cargo da Cadeira de Fundações aprofundar-se no assunto. É sempre aconselhável a execução de sondagens, no sentido de reconhecer o subsolo e escolher a fundação adequada, fazendo com isso, o barateamento das fundações. As sondagens representam, em média, apenas 0,05 à 0,005% do custo total da obra. Os requisitos técnicos a serem preenchidos pela sondagem do subsolo são os seguintes (Godoy, 1971): • Determinação dos tipos de solo que ocorrem, no subsolo, até a profundidade de interesse do projeto; • Determinação das condições de compacidade (areias) ou consistência (argilas) em que ocorrem os diversos tipos de solo; • Determinação da espessura das camadas constituintes do subsolo e avaliação da orientação dos planos (superfícies) que as separam; • Informação completa sobre a ocorrência de água no subsolo. 3.1.1 - Execução da sondagem A sondagem é realizada contando o número de golpes necessários à cravação de parte de um amostrador no solo realizada pela queda livre de um martelo de massa e altura de queda padronizadas. A resistência à penetração dinâmica no solo medida é denominada S.P.T. - Standart Penetration Test. A execução de uma sondagem é um processo repetitivo, que consiste em abertura do furo, ensaio de penetração e amostragem a cada metro de solo sondado. Desta forma,, em cada metro faz-se, inicialmente, a abertura do furo com um comprimento de 55cm, e o restante dos 45cm para a realização do ensaio de penetração. (Figura 3.1) As fases de ensaio e de amostragem são realizadas simultaneamente, utilizando um tripé, um martelo de 65kg, uma haste e o amostrador. (Figura 3.2) (Godoy, 1971) 31 Figura 3.1 - Esquema de sondagem Figura 3.2 - Equipamento de sondagem à percussão 3.1.2 - Resistência à penetração O amostrador é cravado 45cm no solo, sendo anotado o número de golpes necessários à penetração de cada 15 cm. O Índice de Resistência à Penetração é determinado através do número de golpes do peso padrão, caindo de uma altura de 75cm, considerando-se o número necessário à penetração dos últimos 30 cm do amostrador. Conhecido como S.P.T. 55cm - Abertura 45cm - Ensaio 55cm - Abertura 45cm - Ensaio 100cm 100cm Operador peso guia haste amostrador 34 3.1.4 - Perfil de Sondagem Os dados obtidos em uma investigação do subsolo, são normalmente apresentados na forma de um perfil para cada furo de sondagem. A posição das sondagens é amarrada topograficamente e apresentada numa planta de locação bem como o nível da boca do furo que é amarrado a uma referência de nível RN bem definido ( Figura 3.4) No perfil do subsolo as resistências à penetração são indicadas por números à esquerda da vertical da sondagem, nas respectivas cotas. A posição do nível d'água - NA - também é indicada, bem como a data inicial e final de sua medição (Figura 3.5). (Godoy, 1971) Figura 3.4 - Planta de locação das sondagens 1. 40 2.00 5. 60 21.00 1. 40 5. 60 2.00 21.42 2.4 4 7. 00 25.00 CASA EXISTENTE EM CONSTRUÇÃO CASA EXISTENTE R U A .. . G U IA E X IS T E N T E C A LÇ A D A 2.20 S1 S2 (100,13) (99,95) RN=100,00 35 Figura 3.5 - Exemplo de um perfil de subsolo 3.2 - ESCOLHA DO TIPO DE FUNDAÇÃO Com os resultados das sondagens, de grandeza e natureza das cargas estruturais e conhecendo as condições de estabilidade, fundações, etc... das construções vizinhas, pode , o engenheiro, proceder a escolha do tipo de fundação mais adequada, técnica e economicamente. O estudo é conduzido inicialmente, pela verificação da possibilidade do emprego de fundações diretas. Mesmo sendo viável a adoção das fundações diretas é aconselhável comparar o seu custo com o de uma fundação indireta. 36 E finalmente, verificando a impossibilidade da execução das fundações diretas, estuda- se o tipo de fundação profunda mais adequada. 3.2.1 - Tipos de fundações Os principais tipos de fundações podem ser reunidos em dois grandes grupos: fundações diretas ou rasas e fundações indiretas ou profundas (Figura 3.6). Alvenaria Simples Sapata Corrida Pedra ou Contínua Armada Diretas Simples ou Sapata Isolada Rasas Armada Rígidos Radier Flexíveis Pré Mega ou de reação Moldadas Vibradas de concreto Centrífugas Protendida Estacas Brocas sem camisa Escavadas Raiz Moldadas monotube in loco perdidas Indiretas Raynond ou Profundas com camisa Strauss recuperadas Simples Duplex Franki de madeira de aço Tipo poço céu aberto Tipo Chicago Tipo gow Tubulões Pneumático Tipo Benoto (ar comprimido) Tipo Anel de concreto Figura 3.6 - Relação dos tipos de fundações usuais em construção 39 • diminuir a pressão de contato, visto ser a sua largura maior do que a do alicerce; • Uniformizar e limpar o piso sobre o qual será levantado o alicerce de alvenaria d) Alicerce de alvenaria ( Assentamento dos tijolos) • Ficam semi-embutidos no terreno; • Tem espessuras maiores do que a das paredes sendo: paredes de 1 tijolo - feitos com tijolo e meio. paredes de 1/2 tijolo - feitos com um tijolo. • seu respaldo deve estar acima do nível do terreno, a fim de evitar o contato das paredes com o solo; • O tijolo utilizado é o maciço queimado ou requeimado; • assentamento dos tijolos é feito em nível; • Argamassa de assentamento é de cimento e areia traço 1:4. e) Cinta de amarração É sempre aconselhável a colocação de uma cinta de amarração no respaldo dos alicerces. Normalmente a sua ferragem consiste de barras "corridas", no caso de pretender a sua atuação como viga deverá ser calculada a ferragem e os estribos. Sobre a cinta será efetuada a impermeabilização. Para economizar formas, utiliza-se tijolos em espelho, assentados com argamassa de cimento e areia traço 1:3. A função das cintas de amarração é "amarrar" todo o alicerce e distribuir melhor as cargas, não podendo contudo serem utilizadas como vigas. f) Reaterro das valas Após a execução da impermeabilização das fundações, podemos reaterrar as valas. O reaterro deve ser feito em camadas de no máximo 20cm bem compactadas. g) Tipos de alicerces para construção simples Figura 3.9 - Sem cinta de amarração (Borges, 1972) 40 parede de um tijolo Figura 3.10 - Com cinta de amarração (Borges, 1972) parede de meio tijolo Figura 3.11 - Com cinta de amarração (Borges, 1972) Obs. Para manter os ferros corridos da cinta de amarração na posição, devem ser usados estribos, espaçados de mais ou menos 1,0m. A função desses estribos é somente posicionar as armaduras. 3.3.2 Sapatas Isoladas São fundações de concreto simples ou armado. As sapatas de concreto simples (sem armaduras), possuem grande altura, o que lhes confere boa rigidez. Também são denominadas de Blocos. As sapatas de concreto armado, podem ter formato piramidal ou cônico, possuindo pequena altura em relação a sua base, que pode ter forma quadrada ou retangular (formatos mais comuns). 41 Figura 3.12 - Sapata isolada retangular 3.3.3 - Sapatas corridas Executadas em concreto armado e possuem uma dimensão preponderante em relação às demais (Figura 3.13; 3.14; 3.15) Figura 3.13 - Sapata corrida sob paredes Figura 3.14 - Sapata corrida sob pilares h L PAREDE h L PILAR 44 As estacas devem ser preparadas previamente, através de limpeza e remoção do concreto de má qualidade que, normalmente, se encontra acima da cota de arrasamento das estacas moldadas "in loco". Os blocos de coroamento têm também a função de absorver os momentos produzidos por forças horizontais, excentricidade e outras solicitações (Caputo. H.P., 1973). Figura 3.18 - Bloco de coroamento Figura 3.19 - Configuração em planta dos blocos sobre estacas UMA ESTACA DUAS ESTACAS TRÊS ESTACAS QUATRO ESTACAS ... Ø= diâmetro da estaca 45 3.4.3 - Brocas São feitas a trado, em solo sem água, de forma a não haver fechamento do furo nem desmoronamento. • Limite de diâmetro : 15 (6") a 25cm (10") • Limite de comprimento: é da ordem de 6,0m, no mínimo. de 3,0 m a 4,0m • Os ∅ mais usados são 20cm e 25cm. A execução das brocas é extremamente simples e compreende apenas três fases: • abertura da vala dos alicerces • perfuração de um furo no terreno • compactação do fundo do furo • lançamento do concreto Ao contrário de outros tipos de estacas, que veremos adiante, as brocas só serão iniciadas depois de todas as valas abertas, pois o trabalho é exclusivamente manual, não utilizando nenhum equipamento mecânico. Inicia-se a abertura dos furos com uma cavadeira americana e o restante é executado com trado (Figura 3.20; 3.21), que tem o seu comprimento acrescido através de barras de cano galvanizado, (geralmente com 1,5m cada peça) até atingir a profundidade desejada. Figura 3.20 - Tipos de trado 46 Figura 3.21 - Perfuração da broca Ao atingir a profundidade das brocas, as mesmas são preenchidas com concreto fck 13,5 MPa utilizando pedra nº 2, sempre verificando se não houve fechamento do furo, bem como falhas na concretagem. Fazemos isso através da cubicagem (volume) de concreto que será necessária para cada broca. Geralmente as brocas não são armadas, apenas levam pontas de ferro destinadas a amarrá-las à viga baldrame ou blocos. No entanto, certas ocasiões nos obrigam a armá-las e nesses casos, isto é feito com 4 (quatro) ferros e estribos em espiral ou de acordo com o projeto estrutural. Devemos armar as brocas quando: • Verificarmos que as mesmas, além de trabalharem a compressão, também sofrem empuxos laterais; • Forem tracionadas; • Quando em algumas brocas, encontrarmos solo resistente a uma profundidade inferior a 3,0m. Resistência Estrutural da Broca quando bem executadas: • broca de 20cm: - não armada ≅ 4 a 5t - armada ≅ 6 a 7t • broca de 25cm: - não armada ≅ 7 a 8t - armada ≅ 10t 49 Figura 3.24 - Execução das Estacas Franki 3.4.7 - Tubulões São elementos de fundação profunda constituído de um poço (fuste), normalmente de seção circular revestido ou não, e uma base circular ou em forma de elipse (Figura 3.25) (Alonso et al, 1998). Figura 3.25 - Seção típica de um tubulão Sendo: β ≥ 60o dmin. = 70cm D ≅ de 3 a 3,5d H ≥ D - d . tang60o sendo < 2,0m 2 RODAPÉ 15 a 20cm H d D d D x b a FUSTE BASE 50 Os tubulões dividem-se em dois tipos básicos: à céu aberto (com ou sem revestimento) e a ar comprimido (pneumático) revestido. O revestimento dos tubulões podem ser constituídos de camisa de concreto armada ou de aço. Sendo a de aço perdida ou recuperada. Os tubulões à céu aberto é o mais simples, resulta de um poço perfurado manualmente ou mecanicamente e a céu aberto. Seu emprego é limitado para solos coesivos e acima do nível d'água, existindo dois sistemas de execução Chicago e Gow. No sistema Chicago a escavação é feita com pá, em etapas, as paredes são escoradas com pranchas verticais ajustadas por meio de anéis de aço. Já no sistema Gow o escoramento é efetuado utilizando cilindros telescópicos de aço cravados por percussão (Caputo, 1973). Os tubulões a ar comprimido ou pneumáticos utiliza uma câmara de equilíbrio em chapa de aço e um compressor (Figura 3.26). O princípio é manter, pelo ar comprimido injetado, a água afastada do interior do interior do tubulão. Figura 3.26 - Tubulão à ar comprimido 51 3.5 - IMPERMEABILIZAÇÃO Os serviços de impermeabilização representam uma pequena parcela do custo e do volume de uma obra, quando anteriormente planejada. As falhas corrigidas a posteriori, somam muitas vezes o custo inicial. A impermeabilização das edificações não é uma prática moderna. Os romanos empregavam, clara de ovos, sangue, óleos, etc. para impermeabilizar saunas, aquedutos. Já no Brasil, nas cidade históricas, existem igrejas e pontes onde a argamassa das pedras foi aditivada com óleo de baleia. Atualmente, dispomos de produtos desenvolvidos especialmente para evitar a ação prejudicial da água. Podemos dividir os tipos de impermeabilização, de acordo com o ataque de água: - contra a pressão hidrostática; - contra a infiltração; - contra a umidade do solo. Os serviços de impermeabilização contra pressão hidrostática e contra água de infiltração não admitem falhas; a impermeabilização para esses tipos, mais utilizada há mais de 50 anos, é a por meio de membranas onde a plasticidade é a grande vantagem, pois acompanha o movimento das trincas que venham a se formar na estrutura permanecendo impermeáveis mesmo sob pressão hidrostática. Temos também, no Brasil, já há algum tempo, um produto mineral que se aplica na estrutura, em especial as de concreto, que penetra nos poros através de água e se cristaliza até cerca de 6cm dentro da estrutura fechando os poros e ficando solidária com a estrutura. Tem sido bem aceito, pois esse produto pode ser aplicado, e com grande sucesso, nas recuperações de estruturas sujeitas a pressão hidrostática etc... E no caso de umidade do solo, a impermeabilização mais utilizada é com argamassa rígida e impermeabilizantes gordurosos. Como podemos observar, existem basicamente tres sistemas principais de impermeabilização: O rígido: - 1º Constituídos pêlos concretos e argamassas impermeáveis, pela inclusão de um aditivo. - 2º Constituídos por cimentos especiais de cura rápida que são utilizados no tamponamento. O semiflexível: - Semelhante à impermeabilização rígida somente que os aditivos favorecem pequenas movimentações. O flexível: Constituído por lençóis de borracha butílica, membrana de asfalto com elastômetros, lençóis termoplásticos, etc... Devemos ter alguns cuidados com a impermeabilização - Uma impermeabilização não dá resistência à estrutura. Se a estrutura fissurar, a argamassa também o fará. 54 3.5.2 - Impermeabilização nas alvenaria sujeitas a umidade do solo Além dos alicerces, nos locais onde o solo entra em contato com as paredes, devemos executar uma impermeabilização. Faz-se necessário estudar caso a caso para adotar o melhor sistema de impermeabilização (rígido e semiflexível para umidade e flexível para infiltração). As figuras 3.27 e 3.28 detalham uma impermeabilização rígida em diversos locais de uma construção. Figura 3.29 - Impermeabilização em locais de pouca ventilação - Onde o solo encostar na parede levantar o revestimento interno e externo no mínimo 60cm acima do solo Figura 3.30 - Impermeabilização com ventilação - Em ambos os casos o alicerce e o lastro impermeabilizado devem coincidir. 55 3.6 - DRENOS Existem casos que para maior proteção da impermeabilização dos alicerces e também das paredes em arrimo, necessitamos executar DRENOS, para garantir bons resultados. Os drenos devem ser estudados para cada caso, tendo em vista o tipo de solo e a profundidade do lençol freático, etc... Os drenos subterrâneos podem ser de três tipos: - Drenos horizontais (ao longo de uma área) (figura 3.29) - Drenos verticais (tipo estacas de areia) - Drenos em camada (sob base de estrada) De modo gerérico, os drenos horizontais são constituídos: Figura 3.31 - Dreno horizontal 1 - Camada filtrante (areia de granulometria adequada ou manta de poliéster servindo como elemento de retenção de finos do solo. 2 - Material drenante (pedra de granulometria apropriada) que serve para evitar carreamento de areia - 1 - para o interior do tubo, e conduzir as águas drenadas. 3 - Tubo coletor deve ser usado para grandes vazões. Normalmente de concreto, barro cozido ou PVC. 4 - Camada impermeável (selo) no caso do dreno ser destinado apenas à captação de águas subterrâneas. Se o dreno captar águas de superfície, esta camada será substituída por material permeável. 5 - Solo a ser drenado em um estudo mais aprofundado, a sua granulometria servirá de ponto de partida para o projeto das camadas de proteção. Obs. No caso de não ter tubulação condutora de água, o dreno é chamado de cego (Figura 3.30). Os drenos cegos consistem de valas cheias de material granular (brita e areia). O material é colocado com diâmetro decrescente, de baixo para cima. 56 Figura 3.32 - Dreno horizontal cego Uma das utilizações dos drenos é quando o nível de água é muito alto e desejamos rebaixa-lo. Figura 3.33 - Exemplo de aplicação dos drenos Obs. Neste caso os furos do tubo devem estar para cima. 59 4 - ALVENARIA APÓS ESTUDAR ESTE CAPÍTULO; VOCÊ DEVERÁ SER CAPAZ DE: • Escolher a alvenaria adequada; • Orientar a elevação das paredes (primeira fiada, cantos, prumo, nível); • Especificar o tipo de argamassa de assentamento; • Especificar e conhecer o tipo de amarração; • Especificar os tipos de reforços nos vãos das alvenarias. • Executar corretamente os muros de fechamento de divisas. Alvenaria, pelo dicionário da língua portuguesa, é a arte ou ofício de pedreiro ou alvanel, ou ainda, obra composta de pedras naturais ou artificiais, ligadas ou não por argamassa. Modernamente se entende por alvenaria, um conjunto coeso e rígido, de tijolos ou blocos (elementos de alvenaria) unidos entre si por argamassa. A alvenaria pode ser empregada na confecção de diversos elementos construtivos (paredes, abóbadas, sapatas, etc...) e pode ter função estrutural, de vedação etc...Quando a alvenaria é empregada na construção para resistir cargas, ela é chamada Alvenaria resistente, pois além do seu peso próprio, ela suporta cargas (peso das lajes, telhados, pavim. superior, etc...) Quando a alvenaria não é dimensionada para resistir cargas verticais além de seu peso próprio é denominada Alvenaria de vedação. As paredes utilizadas como elemento de vedação devem possuir características técnicas que são: • Resistência mecânica • Isolamento térmico e acústico • Resistência ao fogo • Estanqueidade • Durabilidade As alvenarias de tijolos e blocos cerâmicos ou de concreto, são as mais utilizadas, mas existe investimentos crescentes no desenvolvimento de tecnologias para industrialização de sistemas construtivos aplicando materiais diversos. No entanto neste capítulo iremos abordar os elementos de alvenaria tradicionais. 4.1 - ELEMENTO DE ALVENARIA Produto industrializado, de formato paralelepipedal, para compor uma alvenaria, podendo ser: 4.1.1 - Tijolos de barro cozido a - Tijolo comum (maciço, caipira) São blocos de barro comum, moldados com arestas vivas e retilíneas (Figura 4.1), obtidos após a queima das peças em fornos contínuos ou periódicos com temperaturas das ordem de 900 a 1000°C. 60 * dimensões mais comuns: 21x10x5 * peso: 2,50kg * resistência do tijolo: 20kgf/cm² * quantidades por m²: parede de 1/2 tijolo: 77un parede de 1 tijolo: 148un Figura 4.1 - Tijolo comum b - Tijolo furado (baiano) Tijolo cerâmico vazado, moldados com arestas vivas retilíneas. São produzidos a partir da cerâmica vermelha, tendo a sua conformação obtida através de extrusão. * dimensões: 9x19x19cm * quantidade por m²: parede de 1/2 tijolo: 22un parede de 1 tijolo: 42un * peso ≅ 3,0kg * resistência do tijolo ≅ espelho: 30kgf/cm² e um tijolo: 10kgf/cm² * resistência da parede ≅ 45kgf/cm² A seção transversal destes tijolos é variável, existindo tijolos com furos cilíndricos (Figura 4.2) e com furos prismáticos (Figura 4.3). No assentamento, em ambos os casos, os furos dos tijolos estão dispostos paralelamente à superfície de assentamento o que ocasiona uma diminuição da resistência dos painéis de alvenaria. As faces do tijolo sofrem um processo de vitrificação, que compromete a aderência com as argamassas de assentamento e revestimento, por este motivo são constituídas por ranhuras e saliências, que aumentam a aderência. 61 Figura 4.2 - Tijolo com furo cilíndrico Figura 4.3 - Tijolo com furo prismático c - Tijolo laminado (21 furos) Tijolo cerâmico utilizado para executar paredes de tijolos à vista (Figura 4.4). O processo de fabricação é semelhante ao do tijolo furado. * dimensões: 23x11x5,5cm * quantidade por m²: parede de 1/2 tijolo: 70un parede de 1 tijolo: 140un * peso aproximado ≅ 2,70kg * resistência do tijolo ≅ 35kgf/cm² 64 Figura 4.7 - Bloco de concreto A Tabela 4.2 determina as dimensões nominais dos blocos de concreto mais utilizados. Tabela 4.2 - Dimensões nominais dos blocos de concreto dimensões a b c peso a b c peso *: 09 x 19 x 39 10kg 09 x 19 x 19 4,8kg 11 x 19 x 39 10,7kg 1/2 tijolo 14 x 19 x 19 6,7kg 14 x 19 x 39 13,6kg 19 x 19 x 19 8,7kg 19 x 19 x 39 15,5kg * quantidade de blocos por m² : 12,5un * resistência do bloco: deve-se consultar o fabricante Figura 4.8 - Bloco canaleta Bloco Canaleta : 14 x 19 x 39 = 13,50 kg 19 x 19 x 39 = 18,10 kg 65 4.2 – ELEVAÇÃO DA ALVENARIA: 4.2.1 - Paredes de tijolos maciços Depois de, no mínimo, um dia da impermeabilização, serão erguidas as paredes conforme o projeto de arquitetura. O serviço é iniciado pêlos cantos (Figura 4.9) após o destacamento das paredes (assentamento da primeira fiada), obedecendo o prumo de pedreiro para o alinhamento vertical (Figura 4.10) e o escantilhão no sentido horizontal (Figura 4.9). Os cantos são levantados primeiro porque, desta forma, o restante da parede será erguida sem preocupações de prumo e horizontalidade, pois estica-se uma linha entre os dois cantos já levantados, fiada por fiada. A argamassa de assentamento utilizada é de cimento, cal e areia no traço 1:2:8. Figura 4.9 - Detalhe do nivelamento da elevação da alvenaria 66 Figura 4.10 - Detalhe do prumo das alvenarias Podemos ver nos desenhos (Figura 4.11; 4.12; 4.13) a maneira mais prática de executarmos a elevação da alvenaria, verificando o nível e o prumo. 1o – Colocada a linha, a argamassa e disposta sobre a fiada anterior, conforme a Figura 4.11. Figura 4.11 - Colocação da argamassa de assentamento 69 c - Ajuste Inglês, de difícil execução pode ser utilizado em alvenaria de tijolo aparente (Figura 4.16). Figura 4.16 - Ajuste Inglês ou gótico 4.2.1.b - Formação dos cantos de paredes É de grande importância que os cantos sejam executados corretamente, pois como já visto, as paredes iniciam-se pêlos cantos. Nas Figuras 4.17; 4.18; 4.19; 4.20 e 4.21 mostram a execução de diversos cantos de parede nas diversas modalidades de ajustes. Figura 4.17 - Canto em parede de meio tijolo no ajuste comum 70 Figura 4.18 - Canto em parede de um tijolo no ajuste francês Figura 4.19 - Canto em parede de um tijolo no ajuste comum Figura 4.20 - Canto em parede de espelho 71 Figura 4.21 - Canto em parede externa de um tijolo com parede interna de meio tijolo no ajuste francês 4.2.1.c - Pilares de tijolos maciços São utilizados em locais onde a carga é pequena (varandas, muros etc...). Podem ser executados somente de alvenaria ou e alvenaria e o centro preenchido por concreto (Figura 4.22) Figura 4.22 - Exemplo depilares de alvenaria 4.2.1.d - Empilhamento de tijolos maciços Para conferir na obra a quantidade de tijolos maciços recebidos, é comum empilhar os tijolos de maneira como mostra a Figura 4.23. São 15 camadas, contendo cada 16 tijolos, resultando 240. Como coroamento, arrumam-se mais 10 tijolos, perfazendo uma pilha de 250 74 A amarração dos cantos e de parede interna com externa se faz utilizando barras de aço a cada três fiadas ou utilizando um pilarete de concreto no encontro das alvenarias (Figura 4.26): Figura 4.26 - Detalhe de execução dos cantos 4.2.3 - Parede de tijolos furados As paredes de tijolo furado são utilizadas com a finalidade de diminuir o peso das estruturas e economia, não oferecem grande resistência e portanto, só devem ser aplicados com a única função de vedarem um painel na estrutura de concreto. Sobre elas não devem ser aplicados nenhuma carga direta. No entanto, os tijolos baianos também são utilizados para a elevação das paredes, e o seu assentamento e feito em amarração, tanto para paredes de 1/2 tijolo como para 1 tijolo (Figura 4.27). Figura 4.27 - Execução de alvenaria utilizando tjolos furados 75 A amarração dos cantos e da parede interna com as externas, se faz através de pilares de concreto, pois não se consegue uma amarração perfeita devido às diferenças de dimensões (Figura 4.28). Figura 4.28 - Exemplo de amarração nas alvenaria de tijolo furado 4.3 - VÃOS EM PAREDES DE ALVENARIA Na execução das paredes são deixados os vãos de portas e janelas. No caso das portas os vãos já são destacados na primeira fiada da alvenaria e das janelas na altura do peitoril determinado no projeto. Para que isso ocorra devemos considerar o tipo de batente a ser utilizado pois a medida do mesmo deverá ser acrescido ao vão livre da esquadria (Figura 4.29). esquadrias de madeira: porta = acrescentar 10 cm na largura e 5cm na altura, devido aos batentes. janela = acrescentar 10cm na largura e 10cm na altura. esquadrias de ferro: como o batente é a própria esquadria, os acréscimos serão de 3cm tanto na largura como na altura. Figura 4.29 - Vão de alvenaria Sobre o vão das portas e sobre e sob os vãos das janelas devem ser construídas vergas.(Figura 4.30) Quando trabalha sobre o vão, a sua função é evitar as cargas nas esquadrias e quando trabalha sob o vão, tem a finalidade de distribuir as cargas concentradas uniformemente pela alvenaria inferior: 76 Figura 4.30 - Vergas sobre e sob os vãos As vergas podem ser pré-moldadas ou moldadas no local, e devem exceder ao vão no mínimo 30cm ou 1/5 do vão. No caso de janelas sucessivas, executa-se uma só verga. As Figuras 4.31; 4.32 exemplificam as vergas nas paredes de alvenaria executadas com tijolos maciços para: Vãos até 1,0m Figura 4.31 - Vergas em alvenaria de tijolo maciço para vãos até 1,00m Vãos entre 1,0 e 2,0m Figura 4.32 - Vergas em alvenaria de tijolo maciço para vãos entre 1,00m e 2,00m 79 Figura 4.37 - Cinta de amarração em alvenaria de tijolo maciço Figura 4.38 - Cinta de amarração em alvenaria de tijolo furado Na alvenaria de bloco de concreto utilizamos blocos canaletas para a execução das cintas de amarração (Figura 4.39) Figura 4.39 - Cinta de amarração em alvenaria de bloco de concreto Obs. As cintas de amarração servem para distribuir as cargas e "amarrar" as paredes (internas com as externas). Se necessitarmos que as cintas suportem cargas, devemos então calcular vigas. 80 4.5 - MUROS Os fechamentos para divisas podem ser executados em alvenaria de bloco de concreto (14 x 19 x 39), tijolo maciço ou tijolo furado. Tudo vai depender de um estudo econômico e também técnico para a escolha do melhor elemento Para o bloco de concreto podemos executar de duas maneiras: à vista (Figura 4.40) ou revestido (Figura 4.41). Se a escolha for à vista, devemos utilizar os próprios furos dos blocos para preencher com "grout", formando assim os pilaretes (Figura 4.40), tomando sempre o cuidado de deixar as juntas com o mesmo espaçamento, para podermos frisá-las. Se a escolha for para o revestimento, poderemos também utilizar os furos do bloco como pilarete ou colocar formas e executar um pilarete, neste caso armado. Para o tijolo furado e o maciço, devemos quase sempre revesti-los, portanto a cada 2,5 a 3,0m executa-se um pilarete de 10 x 25, com o auxílio de formas de madeira (Figura 4.42). Obs. Qualquer que seja o elemento escolhido para a execução do muro a cada, no máximo, de 10,00 a 15,00m, devemos deixar uma junta de dilatação de 1,0cm. Esta junta deve ser executada para evitar que no muro apareça trincas devido ser o mesmo esbelto, estar parcialmente engastado no alicerce, e sofrer movimentação devido a variação térmica, ventos etc. 4.5.1 -Fechamento de divisas em bloco de concreto a - À vista: Figura 4.40 - Detalhe dos pilaretes executados nos blocos b - Revestido: 81 Figura 4.41 - Detalhe da elevação de muro de bloco aparente , revestido e viga baldrame 4.5.2 - Fechamento de divisas em tijolo maciço ou baiano Figura 4.42 - Detalhe de execução de um muro de tijolo maciço 84 Aplicação Traço Rendimento por saco de cimento Alvenaria de tijolos de barro cozido (maciço) 1 lata de cimento 2 latas de cal 8 latas de areia 10m² Alvenaria de tijolos baianos ou furados 1 lata de cimento 2 latas de cal 8 latas de areia 16m² Alvenaria de blocos de concreto 1 lata de cimento 1/2 lata de cal 6 latas de areia 30m² 4.6.2 - Aplicação Tradicional: onde o pedreiro espalha a argamassa com a colher e depois pressiona o tijolo ou bloco conferindo o alinhamento e o prumo (Figura 4.46): Figura 4.46 - Assentamento Tradicional Cordão: onde o pedreiro forma dois cordões de argamassa (Figura 4.47), melhorando o desempenho da parede em relação a penetração de água de chuva, ideal para paredes em alvenaria aparente. Figura 4.47 - Aseentamento em cordão 85 Quando a alvenaria for utilizada aparente, pode-se frisar a junta de argamassa, que deve ser comprimida e nunca arrancada (Figura 4.48), conferindo mais resistência além de um efeito estético. Figura 4.48 - Tipos de frisos Os frisos a,b,c são os mais aconselháveis para painéis externos pois evita o acúmulo de água. 86 ANOTAÇÕES 1 - As bitolas dos ferros das vergas e das cintas de amarração, estão colocadas em polegadas, por ser a nomenclatura mais usual entre os pedreiros na obra (Tabela 4.3). Tabela 4.3 - Equivalência das bitolas dos aços mm polegadas 5,0 3/16 6,3 1/4 8,0 5/16 10,0 3/8 12,5 1/2 2 – Verificação para um bom assentamento: - Junta de argamassa entre os tijolos completamente cheias; - Painéis de paredes perfeitamente a prumo e alinhadas, pois, do contrário, será necessário uma grande espessura de revestimento; - Fiadas em nível para se evitar o aumento de espessura de argamassa de assentamento. - Desencontro de juntas para uma perfeita amarração. 3 – Noções de segurança: - A operação de guinchos, gruas e equipamentos de elevação só deve ser feita por trabalhador qualificado. - A utilização de andaimes para a elevação da alvenaria devem ser executados com estruturas de madeira pregadas e não amarradas ou em estruturas metálicas contraventadas e apoiadas em solo resistente e nivelado. - Não acumular muitos tijolos e argamassa sobre os andaimes. 89 FORROS APÓS ESTUDAR ESTE CAPÍTULO; VOCÊ DEVERÁ SER CAPAZ DE: • Escolher o tipo de forro ideal para a sua edificação; • Executar corretamente os apoios das lajes pré fabricadas; • Especificar corretamente o escoramento e contraventamento das lajes pré fabricadas; • Especificar o tipo de armadura adicianal para as lajes pré fabricadas • Executar corretamente a cura e a desforma. Existem vários tipos de forros. Dependendo do tipo de obra, fica a cargo do projetista a sua escolha, levando em consideração a acústica, o acabamento, a estética, etc... Os forros mais comuns são: madeira, gesso, aglomerados de celulose, laje maciça, laje pré-fabricada, laje protendidas, etc... 5.1 - FORRO DE MADEIRA Geralmente são lâminas de pinho, pinus, ipê, jatobá, muiracatiara, etc...(Figura 5.1) e são pregadas em entarugamentos executados de 0,50 a 0,50m, presos às lajes ou nas estruturas do telhado, por buchas e parafusos ou pendurados por tirantes (Figura 5.2; 5.3) Figura 5.1 - Tipos de forros de madeira em telhado Figura 5.2 - Fixação do forro na estrutura do telhado 90 Figura 5.2 - Fixação do forro em laje e em tirantes para execução de rebaixos 5.2 - LAJES PRÉ-FABRICADAS Originam-se das lajes nervuradas e das lajes nervuradas mistas, onde , em geral, as peças pré-fabricadas são empregadas para a formação das nervuras. Entre elas, colocam-se elementos intermediários de cerâmica, concreto ou outros materiais, e o revestimento de concreto, feito no local, tem a função de solidarização dos elementos, além de resistir os esforços à compressão, oriundos da flexão. As variedade desse produto é grande e a sua escolha depende de vários fatores tais como: estrutural, econômico, etc... Podemos ter: - Laje pré-fabricada "comum" - Laje treliça - Tipo Brasília - Protendidas etc... Nesta apostila abordaremos as lajes pré "comum" e as treliças, visto serem as mais utilizadas em obras de pequeno porte. 5.2.1 - Generalidade sobre a laje pré-fabricada "comum" a) - Elementos que a compõem: • Vigota de concreto pré fabricada; • Enchimento entre as vigotas de tijolo cerâmico, elemento de concreto ou EPS; • Capa de concreto (capeamento) de espessura e = variável (Figura 5.5) 91 Figura 5.4 - Elementos da laje pré fabricada comum b) - Variação das alturas: - A diferente altura dos elementos de enchimento, com o lançamento de capas de concreto em espessura adequada, resulta nas variadas alturas de lajes (Figura 5.5). - - A diferente largura dos elementos de enchimento, proporciona os variados intereixos entre as vigotas. - - As mais usuais são: β10 para forro e β12 para piso, em vãos máximos de 4,50m. Para vãos maiores, o ideal seriam outros tipos de lajes. - - Geralmente o concreto utilizado para realizar o capeamento das lajes pré fabricadas é o de 18Mpa, 20 Mpa, ou segundo a orientação do calculista. Figura 5.5 - Variação das alturas de uma laje pré fabricada comum c) - Armaduras usuais: Armadura de distribuição. A armadura de distribuição em lajes pré-moldadas tem a finalidade de limitar a fissuração que poderá ocorrer pela retração e/ou variação de temperatura e ainda melhora a monoliticidade do painel da laje, aumentando sua rigidez e evitando a fissuração decorrente de deslocamento diferenciais, que deverão ocorrer entre suas vigotas de concreto. Caso não esteja especificado no projeto podemos adotar no mínimo: forro = malha ∅ 6,3mm de 33 x 33cm piso = malha ∅ 6,3mm de 25 x 25cm mínimos 3 ∅ por metro, ou em tela soldada leve para laje. É aconselhável que a ferragem de distribuição, no sentido da vigota pré fabricada, seja posicionada sobre a mesma. A armadura de distribuição atinge maior eficiência quando utiliza-se aço com diâmetro menor e em quantidade maior. e
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved