Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Bioquimica 2 - Apostilas - Medicina Part1, Notas de estudo de Medicina

Apostilas de Medicina sobre o estudo da Bioquímica, reação ácido-base, ph e sistema tampão, estrutura primária de proteínas, estrutura secundária e terciária de proteína, cinética e termodinâmica.

Tipologia: Notas de estudo

2013
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 01/07/2013

Kaka88
Kaka88 🇧🇷

4.5

(232)

171 documentos

1 / 38

Documentos relacionados


Pré-visualização parcial do texto

Baixe Bioquimica 2 - Apostilas - Medicina Part1 e outras Notas de estudo em PDF para Medicina, somente na Docsity! UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA BIOQUÍMICA QBQ220N Biologia Noturno Professores Alexander Henning Ulrich Hugo Aguirre Armelin 2006 2 ÍNDICE APRESENTAÇÃO................................................................................................................................5 INTRODUÇÃO E NORMAS GERAIS ..................................................................................................5 NORMAS E RECOMEDAÇÕES NO LABORATÓRIO ........................................................................6 GUIA PARA RELATÓRIO DE LABORATÓRIO..................................................................................6 AVALIAÇÃO.........................................................................................................................................7 BIBLIOGRAFIA RECOMENDADA ......................................................................................................7 CALENDÁRIO DE MÓDULOS E ATIVIDADES 2006 .........................................................................8 MÓDULO 1: REAÇÃO ÁCIDO-BASE, PH E SISTEMA TAMPÃO....................................................10 Grupos de discussâo 1 ....................................................................................................................11 MÓDULO 2: AMINOÁCIDOS.............................................................................................................12 Grupo de discussão 2 ......................................................................................................................12 MÓDULO 3: ESTRUTURA PRIMÁRIA DE PROTEÍNAS..................................................................15 Grupo de discussão 3 ......................................................................................................................16 MÓDULO 4: ESTRUTURA SECUNDÁRIA E TERCIÁRIA DE PROTEÍNAS....................................17 Grupo de discussão 4 ......................................................................................................................20 MÓDULO 5: CINÉTICA E TERMODINÂMICA ..................................................................................21 Grupo de discussão 5 ......................................................................................................................25 MÓDULO 6: CINÉTICA ENZIMÁTICA...............................................................................................26 Grupo de discussão 6 ......................................................................................................................30 MÓDULO 7: MECANISMOS DE CATÁLISE ENZIMÁTICA..............................................................32 Grupo de discussão 7 ......................................................................................................................34 MÓDULO 8: AÇÚCARES: ESTRUTURA E FUNÇÃO ......................................................................35 Grupo de discussão 8 ......................................................................................................................39 5 APRESENTAÇÃO PROFESSORES: Prof. Dr. Hugo Aguirre Armelin (coordenador) Bloco 9 Inf., Sala 924 Prof. Dr. Alexander Henning Ulrich Bloco 8 Sup., Sala 858 MONITORES: Doutorando Cleber Augusto Trujillo Bloco 8 Sup., Sala 858 Doutoranda Katia Neves Gomes Bloco 8 Sup., Sala 858 INTRODUÇÃO E NORMAS GERAIS A disciplina de Bioquímica (QBQ220-noturno) compreende o programa de módulos mostrado no calendário das páginas 8 e 9. Cada módulo focaliza um tópico a ser desenvolvido em um dia de aula, envolvendo 3 atividades: a) Aula expositiva pelo professor; b) Grupos de discussão centrados em questões objetivas; c) Fechamento do tema pelo professor que analisará as questões discutidas em grupo. Além destes módulos, desenvolvidos em sala de aula, haverá também um conjunto de módulos de laboratório, consistindo em 5 aulas práticas concentradas no último mês de curso. Os grupos de discussão serão formados por 6 alunos, organizados no primeiro dia de aula permanecendo fixos por todo o curso. Para as aulas de laboratório cada grupo será dividido em 2: A e B. Cada módulo de laboratório consistirá em 3 atividades: a) Execução da aula prática no laboratório; b) Trabalho em sala de aula; c) Relatório que será realizado em sala de aula. No primeiro dia de cada modulo de laboratório, o conjunto de subgrupos A trabalhará no laboratório, enquanto os subgrupos B estarão na sala de aula. No período seguinte inverte-se: subgrupos B no laboratório e subgrupos A na sala de aula. Finalmente, no último período, os subgrupos se reúnem na sala de aula para discutir, conciliar resultado e fazer um relatório de grupo, que deve ser entregue no mesmo dia. 6 NORMAS E RECOMEDAÇÕES NO LABORATÓRIO Em cada módulo de laboratório, os subgrupos da turma A trabalharão no laboratório enquanto os subgrupos da turma B estarão na sala de aula para discutir e conciliar os resultados obtidos na aula prática e para fazer um relatório de grupo, que deverá ser entregue no mesmo dia. No período seguinte, inverte-se: os subgrupos da turma B no laboratório e subgrupos da turma A na sala de aula. Seguir rigorosamente as seguintes instruções: - É PROIBIDO COMER, BEBER E FUMAR NO LABORATÓRIO. - Leia com detalhe o procedimento experimental (protocolo) e preste atenção às instruções fornecidas antes de iniciar a experiência. - Procure utilizar reagentes, vidraria e equipamentos disponíveis com cuidado, para evitar desperdício e quebra. - Mantenha sua área de trabalho organizada. Ao terminar a experiência passe água na vidraria utilizada e a coloque no local indicado. - Em caso de dúvida ou acidente, peça auxílio aos monitores ou aos professores. - Uso do avental nas aulas práticas é obrigatório! GUIA PARA RELATÓRIO DE LABORATÓRIO OBJETIVOS: Colocar o(s) objetivo(s) da aula prática de forma clara e concisa. INTRODUÇÃO: Deve conter os fundamentos bioquímicos da metodologia empregada (aspectos teóricos da aula prática encontrados na literatura). MATERIAIS E MÉTODOS: Descrever os procedimentos executados em laboratório incluindo todos os reagentes, materiais e equipamentos utilizados. RESULTADOS E DISCUSSÃO: Colocar todos os dados obtidos (utilizar tabelas, caso julgue necessário). Os gráficos serão aceitos em papel milimetrado ou no Excel. Comentar os resultados comparando turma A e B, discutir possíveis diferenças obtidas comparando com dados da literatura. CONCLUSÃO: Comentar quais as conclusões da aula prática. Ser claro e objetivo nas conclusões. Esclarecer se os objetivos propostos foram atingidos ou não. BIBLIOGRAFIA: Colocar todos os livros e artigos consultados. NÃO ULTRAPASSAR 5 PÁGINAS DE RELATÓRIO! 7 AVALIAÇÃO A avaliação de desempenho será composta dos seguintes itens: a) Provas em grupo (PG1 a PG6), que consistirão num trabalho em grupo para resolução de questões objetivas por um período de 4 h; b) Relatórios de laboratório (R1 a R5); c) Provas escritas individuais (P1, P2 e P3). A última prova escrita da matéria será sobre os temas abordados em laboratório. O cálculo da media final será feito através da seguinte formula: 10 5,230,325,212 11 xPxPxPx RsPGs MédiaFinal +++⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = ∑ ∑ Haverá uma única prova substitutiva para substituir uma das provas individuais de avaliação. Reposições de PG ou relatório de laboratório estão vetados. A presença em todas as atividades é obrigatória. Uma lista de presença será passada em todas as aula. Alunos que alcançarem a média final ≥ 5,0 e mostrarem freqüência ≥ 70% estarão aprovados. Aqueles cuja média for no mínimo igual a 3,0 e apresentarem freqüência ≥ 70% poderão fazer a prova de recuperação. BIBLIOGRAFIA RECOMENDADA A bibliografia recomendada envolve 2 livros textos em português: TORRES, B. B. & MARZZOCCO, A. Bioquímica Básica. VOET, D. ; VOET, J. & PRATT, C. W. Fundamentos de Bioquímica. Contudo, outros excelentes textos de Bioquímica, em geral em inglês, poderão ser usados com igual proveito: VOET, D. & VOET, J. Biochemistry. STRYER, L.; BERG, J. M. AND TYMOCZKO, J. L. Biochemistry. LEHNINGER, A. L. Principles of Biochemistry. 10 MÓDULO 1: REAÇÃO ÁCIDO-BASE, pH E SISTEMA TAMPÃO 1. A molécula de água, H2O, apresenta um ângulo de 104,5 graus entre as duas ligações O-H, dando-lhe um caráter altamente polar. Além disso, o átomo de O possui 2 pares de elétrons livres, permitindo a formação de ligações (ou pontes) de H entre moléculas vizinhas. Esta estrutura dá à água propriedades físicas e químicas de enorme importância biológica. 2. A água se ioniza através de uma reação ácido-base: H2O + H2O H3O++ OH- A reação ácido-base se caracteriza pela troca de prótons entre pares conjugados de ácidos e bases. A água pode se comportar como ácido e como base: AH + H2O H3O+ + A- B + H2O BH + OH- Estas são reações de equilíbrio, às quais correspondem constantes de equilíbrio definidas. Por exemplo: K = [H3O+] [A-] [AH] [H2O] K mede a afinidade relativa das bases, de cada par ácido-base conjugados (AH/ A- e H3O+/ H2O), por prótons. Fala-se comumente em constante de dissociação de um ácido (Ka), significando: Ka = K [H2O] = [H+] [A-], onde [H2O] é essencialmente constante (55 M). [AH] 3. [H+] é a concentração hidrogeniônica e os valores de [H+] para a maioria das soluções são muito baixos e difíceis de serem comparados. Um valor mais prático é conhecido como pH: pH = - log [H+]. como 1/[H+] = 1/K x [A-]/[AH] pode-se obter pH = - logK + log [A-]/[AH] por analogia - log K = pK e pH = pK + log [A-]/[AH] Conclui-se que pK é numericamente igual a pH da solução na qual as concentrações molares do ácido e sua base conjugada são iguais (ie log [A-]/[AH] = 0). A igualdade pH = pK + log [A-]/[AH] é conhecida como Equação de Henderson- Hasselbach. 4. Ácidos são classificados de acordo com sua força relativa, ou seja, de acordo com sua capacidade de transferir um próton para a água. Ácidos com constantes de dissociação menores do que aquela de H3O+ (que, por definição, é igual a 1 em soluções aquosas (vê se consegue confirmar porquê!)) são só parcialmente ionizados em soluções aquosas e são conhecidos como ácidos fracos (K < 1). Já os ácidos fortes têm constantes de dissociação maiores que a de H3O+, sendo quase completamente ionizados em soluções aquosas (K>1). 11 5. Tampões são sistemas aquosos que tendem a resistir a variações no seu pH quando pequenas quantidades de ácido (H+) ou base (OH-) são adicionadas. Um sistema tampão consiste de um ácido fraco (o doador de prótons) e sua base conjugada (o aceptor de prótons). É comum encontarr os seguintes símbolos para representar um ácido (AH ou BH+) e sua base conjugada (A- ou B:) 6. A adição de ácido forte (H+) ou base forte (OH-) a uma solução aquosa de um ácido fraco, por exemplo, ácido acético (pKa = 4,76), causa pequenas variações de pH, se a solução estiver a um pH próximo do pK do ácido. Este comportamento define um tampão ácido-base. Grupos de discussâo 1 1) Defina ácidos e bases no conceito de Brønsted, mostrando exemplos. 2) a) Qual o pH das soluções 0,1 M dos ácidos fortes HCl e HNO3? b) Usar a equação Henderson- Hasselbach para calcular o grau de dissociação dos ácidos fracos i) H2S (Ka=1x10-7) e ii) ácido acético (Ka=2x10-5) em soluções 0,1 M. Qual o respectivo pH dessas soluções? 3) Esquematize a curva de titulação de 1 L de uma solução de 0,1 M H3PO4 com uma solução de 10 M NaOH, colocando pH (eixo y) em função de volume de base adicional (eixo x). Indicar os pontos na titulação (volumes de NaOH) em que o pH equivale cada um dos pKas do ácido. 4) Indique como se pode preparar 1 L de um tampão a pH=7,0, capaz de manter o pH estável com adição de 10 mL de HCl 0,1M, dispondo-se das soluções: a) 1M H3PO4 b) 1M ácido acético c) 1M NaOH 5) Desenhe a estrutura do gelo, mostrando pontes de hidrogênio entre moléculas de água. O que acontece quando o gelo derrete? Porque a água líquida à 4oC é mais densa do que o gelo à 0oC? 6) Desenhe a estrutura do NaCl no estado sólido e também no estado aquoso, neste último, destaque suas interações com água. 12 MÓDULO 2: AMINOÁCIDOS 1. Aminoácidos, bases purínicas e pirimidínicas, nucleosídeos e nucleotídeos, hexoses (como glicose), são componentes monoméricos dos principais polímeros biológicos, ou seja, proteínas, ácidos nucléicos (DNA e RNA) e polissacarídeos (glicogênio, amido e celulose). Aminoácidos, bases, nucleosídeos e nucleotídeos são muito solúveis em água e possuem grupos funcionais que participam em reações ácido-base. Glicose também é altamente solúvel em água, mas não participa em reações ácido-base. i. Há 20 aminoácidos que compõem proteínas (Tabela 1), todos mostrando a fórmula geral: R +H3N Cα COO- íon dipolar ou zwitterion encontrado em água pH 7 H 2. Aminoácidos podem ser agrupados em classes com base nas propriedades dos seus grupos radicais (R), em particular sua polaridade ou tendência de interagir com água em pH biológico (± 7,0). 3. Todos os aminoácidos livres comportam como ácidos polipróticos. Quando um aminoácido cristalino é dissolvido em água, ele pode agir como um ácido ou como uma base. O grupo carboxílico mostra um pK em torno de 2,0, enquanto o grupo amino tem um pK entre 9,0 e 10,0. Portanto, no pH fisiológico (pH 7,0), a maioria das moléculas de todos os aminoácidos está na forma de íons dipolares (zwitterions). Chama-se pI de um aminoácido o pH da solução na qual suas moléculas possuem carga líquida nula. Na cadeia lateral (-R) os aminoácidos apresentam grupos funcionais, entre os quais existem grupos ácido-base. 4. O carbono α dos aminoácidos, excetuando-se a glicina, é assimétrico, fazendo com que estas substâncias tenham atividade óptica e, portanto, apresentem pares de isômeros ópticos. Grupo de discussão 2 1) Quais dos aminoácidos têm dois carbonos quirais e qual deles não possui isomeria óptica? 2) Mostre porque a seguinte forma não-iônica de um aminoácido não pode ser encontrada em solução aquosa. R H2N Cα COOH H 15 MÓDULO 3: ESTRUTURA PRIMÁRIA DE PROTEÍNAS 1. A descrição da estrutura das proteínas é dividida em quatro níveis de organização: estrutura primária, secundária, terciária e quartenária. 2. A estrutura primária se refere à seqüência de aminoácidos que compõem a proteína. Trata- se, portanto, da estrutura de ligações covalentes. A principal ligação covalente entre aminoácios é a ligação peptídica. Os aminoácidos podem formar polímeros através da ligação do grupo carboxila de um aminoácido com o grupo amino de outro. Esta ligação carbono-nitrogênio chamada ligação peptídica, é obtida por exclusão de uma molécula de água. Quimicamente, a formação da ligação peptídica pode ser representada pela seguinte equação: Esta reação, como esta escrita, jamais ocorre nos seres vivos. A união dos aminoácidos por ligação peptídica não é feita por reação direta entre eles, mas através de um complexo aparato de síntese protéica, que inclui ribossomos, ácidos ribonucléicos, várias proteínas e enzimas num processo chamado “tradução”. A equação mostra apenas o resultado liquido do processo. 3. As propriedades da ligação peptídica impõem restrições ao dobramento do polímero formado. A ligação peptídica apesar de ser representada por um único traço de ligação, tem características intermediarias entre uma ligação simples e uma dupla ligação, devido as interações entre duas formas de ressonância. A conseqüência desse caráter parcial de dupla ligação é que não há possibilidade de rotação em torno da ligação peptídica. Assim sendo, os quatro átomos dos grupamentos que participam da ligação peptídica ficam dispostos em um plano rígido, constituindo o que se costuma chamar de grupo peptídico ou unidade peptídica (vide retângulos) Notar também que os dois carbonos alpha (Cα) vizinhos de cada ligaçào peptídica também se encontram o plano. 16 Marzzocco & Torres, Bioquímica Básica. O polímero formado pode, portanto, ser visualizado como uma cadeia constituída por unidades planares (unidades peptídicas), unidas entre si com uma articulação flexível: o carbono α. Esta cadeia chama-se cadeia polipeptídica. As proteínas podem ser formadas por uma ou mais cadeias polipeptídicas. 4. Todavia, existem pontos de dobramento entre as unidades peptídicas rígidas, graças a possibilidade de rotação em torno das ligações com o carbono alfa (N-Cα e Cα-C), que são ligações efetivamente simples (vide figura acima). Estas ligações são chamadas phi (φ) e psi (ψ) respectivamente. 5. A cadeia polipeptídica pode ser dividida entre a cadeia principal e as cadeias laterais (grupos R) ligados aos carbonos alfa. Grupo de discussão 3 1) Defina estrutura primária, secundária, terciária e quaternária de uma proteína, dando exemplos. 2) Esquematize a estrutura de uma ligação peptídica. 17 3) a) Desenhar o tripeptídeo Ala-Asp-His. b) Calcular o seu pI. c) Calcular sua carga líquida em pH 1, pH 6 e pH 12. 4) Com os dados abaixo, defina a seqüência do peptídeo analisado: a) hidrólise ácida total resultou em: Arg, Tyr, Leu, Ala, Glu Lys, Ser e Pro; b) dansilação e hidrólise produziram: dansil-Leu; c) dois ciclos consecutivos de degradação de Edman liberaram, respectivamente Leu e Tyr; d) tripsina liberou 2 peptídeos cujas composições, após hidrólise ácida total, foram, respectivamente (Tyr, Leu, Arg) e (Ser, Glu, Pro, Ala Lys); e) carboxipeptidase A não liberou nada, mas carboxipeptidase C liberou Ser; f) endopeptidase V8 liberou o tripeptídeo Lys-Pro-Ser e um pentapeptídeo que, tratado com carboxipeptidase C, liberou Glu. 5) Mostre a reação de óxido-redução da cisteína que é importante na estrutura de peptídeos. MÓDULO 4: ESTRUTURA SECUNDÁRIA E TERCIÁRIA DE PROTEÍNAS 1. A estrutura secundária é definida pela conformação local do esqueleto de ligações peptídicas que compõe o eixo da proteína. Esta conformação local pode ser explicitamente expressa através dos ângulos phi (φ) e psi (ψ) (vide Módulo 3). Em geral, certas combinações de ângulos phi (φ) e psi (ψ) são permitidas enquanto outras não são permitidas devido a impedimentos estéricos entre âtomos de grupos vizinhos. Este princípio pode ser resumido numa diagrama de Ramachandran (Figura 1). Figura 1: Diagramas de Ramachandran. Esquerda: Estruturas secundárias correpondentes às combinações estericamente permitidas para angulos phi e psi. Direta: ângulos observados para todos as ligações em 12 proteínas com estruturas de alta resolução determinadas por cristalografia. β β α α 20 Grupo de discussão 4 1) Distinga estrutura secundária e terciária de uma proteína. Dê exemplos. 2) Descreva α-hélice e folha β pregueada. Aponte as diferenças essenciais entre estas formas de estrutura secundária encontradas em peptídeos. 3) Discuta os dois diagramas de Ramachandran apresentados na Figura 1 e relacione-os com as estruturas apresentadas nas Figuras 2 e 3. 4) Descreva a experiência clássica de Anfinsen com a enzima ribonuclease A, indicando sua conclusão principal. Qual o papel das pontes de dissulfeto na manutenção da estrutura nativa (terciária) da ribonuclease? Conceitue estrutura nativa e desnaturação de proteínas, mostrando o que isso tem a ver com a atividade enzimática da ribonuclase A. Que função termodinâmica promove espontaneamente a transição da ribonuclease de desnaturada para nativa? 5.) Duas proteínas, apesar de terem diferenças quanto a alguns de seus aminoácidos, são capazes de desempenhar a mesma função. Explique como isto é possível. 6.) Pesquisar informações sobre a estrutura de hemoglobina. Descrever a sua estrutura terciária e quartenária. Descrever as mudanças na estrutura quartenária que acontecem devido à ligação de oxigênio. 7) O que é efeito hidrofóbico e qual o seu papel na manutenção da estrutura terciária das proteínas? Qual o fator preponderante no efeito hidrofóbico: o entálpico ou o entrópico? Explique qualitativamente sua resposta. 8) Mostre porque uréia desorganiza a α-hélice. 21 MÓDULO 5: CINÉTICA E TERMODINÂMICA 1. A variação de energia livre padrão é diretamente relacionada à constante de equilíbrio: ∆Go = -2.3RT log Keq 2. A composição de um sistema de reação (uma mistura de reagentes e produtos) tende a uma variação contínua até que o equilíbrio é alcançado. No equilíbrio, as taxas de reação para um lado e para outro são exatamente iguais. As concentrações de reagentes e produtos no equilíbrio definem a constante de equilíbrio. Na reação: A + B C + D , a constante de equilíbrio é dada por: Keq = [C][D] / [A][B] 3. Quando um sistema não está em equilíbrio, ele tende ao equilíbrio, e a magnitude desta tendência pode ser medida como a variação de energia livre da reação, ∆G. A energia livre de Gibbs (G), uma propriedade termodinâmica, é definida pela equação: G = H – TS, onde H, T e S são respectivamente entalpia, temperatura absoluta e entropia, todas também propriedades termodinâmicas. 4. Numa transição de estado a temperatura (T) e pressão constantes (condições comuns às reações bioquímicas) a variação de G (∆G) é: ∆G = ∆H - T∆S. Se se trata de uma reação bioquímica, ∆H é o calor de reação. Quando ∆H é positivo a reação é endotérmica, se ∆H for negativo a reação é exotérmica. Nestas condições, a espontaneidade da reação é definida pelo valor de ∆G: se ∆G é negativo, a reação é espontânea, sendo denominada exergônica. Se, ao contrário, ∆G for positivo, a reação não ocorre espontaneamente e é denominada endergônica. Portanto, a reação ocorre no sentido em que a energia livre total diminui. 4. No equilíbrio, ∆G = 0. Logo, é possível demonstrar a validade das seguintes igualdades: ∆G = ∆G° + 2,3 RT logB/A B/A = K ∆G° = - 2,3 RT logK 5. Em condições padrão, à 25°C (298K), com concentrações de reagentes e produtos iguais a 1M, pH = 0, a variação de energia livre é considerada padrão, ou ∆G°. Entretanto, a maioria das reações bioquímicas ocorrem em pH 7,0, para as quais utiliza-se ∆G°´. 6. A Figura 4 mostra esquematicamente como varia G com o desenvolvimento da reação, indicado no eixo das abcissas como coordenada de reação 22 Figura 4. Variação de energia livre (G) no decorrer de uma reação genérica. Para que a reação ocorra, necessariamente tem-se Gfinal < Ginicial, isto é, ∆G é negativo. Um ponto importante a ser destacado é que o valor de ∆G permite prever se a reação pode ocorrer, mas não a velocidade com que a reação atinge o equilíbrio. A velocidade de reação depende da energia livre do Estado de Transição que é maior que do que o dos reagentes no Estado Inicial, isto é, ∆G* é positivo. Quanto maior o valor de ∆G*, menor será a velocidade de reação. 7. Na reação genérica A → B a velocidade (v) é proporcional a [A], isto é, v1=k1[A]. A velocidade da reação inversa será, consequentemente, v-1=k-1[B]. k1 e k-1 são constantes de velocidade e reações como A→B e B→A são ditas de primeira ordem, porque as suas respectivas velocidades dependem de concentração molar de um único reagente elevado à potência 1. As constantes de velocidade k1 e k-1 são diferentes da constante de equilíbrio da reação, K=[B]/[A]. No estado de equilíbrio, por definição, v1=v-1 e, portanto, formalmente, K=k1/k-1. As reações representadas pelas equações seguintes: 2A→B e A+B→C são de segunda ordem, cujas velocidades são, respectivamente, v=kA[A]2 e v=kAB[A][B]. Notar que a ordem da reação não coincide necessariamente com a estequiometria da equação química. 8. As quinases formam uma classe muito importante e abundante de enzimas, que se caracterizam por catalisar a transferência de um grupo fosfato de alta energia para uma outra substância receptora. 9. São chamados compostos de alta energia substâncias orgânicas com o grupo fosfato em ligações anidrido ou fosfoenol, cuja hidrólise libera fostato inorgânico (Pi) com um ∆G0’ negativo e em valor absoluto superior a 8kcal/mol. Outros compostos fosforilados com o fosfato em ligações ester ou tioester também mostram um ∆G0’ de hidrólise negativo, mas de valor absoluto Energia Livre (G) Coordenada de Reação Estado Inicial (S) Estado Final (P) Estado de Transição ∆G°' ∆G* 25 11. Além das quinases que catalisam a transferência de grupo fosfato do ATP para metabólitos, existem as quinases que tem como substratos proteínas, genericamente referidas como quinases de proteína ou, simplesmente, proteína-quinases. Há alguns milhares de proteína-quinases diferentes em um organismo, que catalisam a transferência de fosfato de ATP para o grupo OH da cadeia lateral de resíduos específicos de serina e treonina formando um éster de fosfato. As reações deste tipo são genericamente chamadas de fosforilações e são modificações covalentes que causam mudança de conformação das proteínas, alterando sua atividade biológica. Por exemplo, um grande número de enzimas são fosforiladas para sofrer uma transição do estado inativo ao ativo ou vice-versa. Mais raramente as proteínas são fosforiladas no grupo enólico de resíduos de tirosina. Grupo de discussão 5 1) Defina reações exotérmicas e endotérmicas. Qual a relação entre estes conceitos e a função termodinâmica entalpia? 2) Defina reações exergônicas e endergônicas. Qual a relação destes conceitos com ∆G0’. 3) ∆G0’ é característico de cada reação (desde que a temperatura seja constante) e não varia com as concentrações de reagentes e produtos no equilíbrio. ∆G, por outro lado, não é característico da reação, podendo assumir qualquer valor em função das concentrações iniciais de reagentes e produtos (quociente Q na expressão de ∆G). Mostre por que estas afirmações são verdadeiras discutindo a expressão que relaciona ∆G0’ e ∆G. 4) Na reação genérica A B Keq=103. Qual o valor de ∆G0’? No ponto de equilíbrio as concentrações molares de A e B podem variar? Como varia ∆G com as concentrações molares iniciais de A e B? 5) Ainda para a reação A B (questão 4) proponha uma condição na qual a reação inversa seja espontânea. Mostre que a sua proposta é possível calculando o respectivo ∆G. Esta questão possui múltiplas respostas ou apenas uma resposta única? 6) Para a reação A B (questão 4), se a constante de velocidade de primeira ordem, k1 for igual a 10, qual deve ser o valor da constante k-1 para a reação inversa? Para um mesmo K, constante de equilíbrio, pode haver múltiplos valores de k1 e k-1 ? Qual a interpretação termodinâmica para a sua resposta? 26 7) Considerando a equação ∆G0’ = -2,3 RT log K, sendo: R = 1,98 x 10-3 kcal/mol K; T = 298K e 2,3 RT = 1,36 kcal/mol. Calcule os valores de ∆G0’ quando K varia de 105 a 10-5. Faça uma tabela. 8) Porque a hidrólise de ATP necessita catálise enzimática, sendo este um composto rico em energia? Utilize-se do gráfico esquemático de variação de G (energia livre) em função de coordenada de reação para responder a esta questão, definindo estado de transição e energia de ativação. MÓDULO 6: CINÉTICA ENZIMÁTICA 1. Enzimas são catalisadores biológicos cuja natureza química é proteica. A natureza proteica das enzimas lhes proporciona alto grau de especificidade. 2. A grande maioria das reações biológicas não ocorre, ou ocorrem a velocidades baixíssimas nas condições fisiológicas de pH e temperatura. Logo, as reações biológicas, em geral, necessitam de catálise para ocorrer, isto é, necessitam de enzimas. Para cada reação há uma enzima específica. 3. Na reação genérica A → B a direção espontânea da reação é dada pela variação de energia livre, .∆G0, conforme esquematizado no gráfico da Figura 5. Figura 6. Variação de energia livre (G) na reação genérica A → B. Energia Livre (G) Coordenada de Reação Estado Inicial (S) Estado Final (P) Estado de transição da reação não catalisada ∆G0 ∆G10# ∆G0#-1 Estado de transição da reação catalisada ∆G0#-1cat ∆G0#1cat * * 27 ∆G0 é uma constante que se relaciona com a constante de equilíbrio da reação pela expressão - ∆G0=2.3 RTlogK. Por outro lado, as velocidades das reações A→B e B→A ou, respectivamente, as constantes de velocidade k1 e k-1 não dependem do ∆G0 da reação, mas dos, respectivos, ∆G10≠ e ∆G-10≠, que por sua vez só dependem da energia livre (G) do estado de transição (energias de ativação). A enzima (catalisador) não muda o ∆G0 da reação, pois catalisadores não interferem com os estados inicial e final das reações, mas mudam o “caminho” da reação e, por conseqüência diminuem a energia do Estado de Transição. 4. Uréia é uma substância muito estável em água, mas que pode ser rapidamente decompostas por hidrólise se a reação for catalisada pela enzima urease: H2N UREASE C=O + H2O CO2 + 2 NH3 H2N Trata-se de reação de primeira ordem, onde v=k1[uréia], apesar da equação estequiométrica indicar a existência de 2 reagentes. Esta reação pode ser acompanhada em tubo de ensaio no laboratório. As Tabelas 3 e 4 mostram resultados obtidos na prática. Tabela 3. Cinética da enzima urease. Tubo no Tempo (minuto) NH3(µmoles) 1 0 0 2 2 0.084 3 4 0.168 4 6 0.252 5 8 0.336 6 10 0.420 Concentração da uréia: 5 mM; Concentração da urease: 0,1 µg/mL; Volume de reação: 1 mL; Temperatura: 30oC. Os dados da Tabela 3 mostram que a velocidade da reação é constante ao longo do tempo estudado. Já os dados da Tabela 4 mostram variações relativamente complexas da velocidade de reação em função da concentração da uréia para um período de 10 minutos de reação. 30 5. Substâncias que reduzem a atividade de uma enzima são chamadas inibidores. Em termos gerais, inibidores podem atuar em várias maneiras. Aqui vamos focalizar em inibidores que ligam reversivelmente com a enzima com constantes de dissociação KI. Estes tipos de inibidores podem atuar em duas maneiras diferentes: a) Eles podem competir com o substrato para o mesmo sítio de ligação na superfície da enzima livre. Neste caso são chamados inibidores competitivos ou b) Eles podem ligar em outro sítio na enzima livre (E) e/ou no complexo enzima-substrato (ES). Estes inibidores são chamados inibidores mistos/não- competitivos se podem ligar a E e ES e são chamados acompetitivos se ligam somente ao complexo ES. 6. A presença de um inibidor competitivo se manifesta em uma mudança no valor do Km: Km obs = Km(1+[I]/KI) = αKm onde α = (1+[I]/KI) 7. A presença de um inibidor misto/não-competitivo se manifesta em uma mudança nos valores do Km e no valor do Vmax: Km obs = Km(1+[I]/KI)/(1+[I]/KI’) = αKm / α’ Vmax obs = Vmax / α’ 8. A presença de um inibidor acompetitivo se manifesta em uma mudança nos valores do Km e no valor do Vmax: Km obs = Km / (1+[I]/KI’) = Km / α’ Vmax obs = Vmax / α’ Grupo de discussão 6 1) As velocidades de uma reação enzimática foram determinadas para diversas concentrações de substrato, conforme a tabela abaixo: [S] (µM) V (µmol/L.min) 5 22 10 39 20 65 50 102 100 120 200 135 Os gráficos de, respectivamente, V em função de [S] e 1/V em função de 1/[S] podem servir para determinar Km e Vmax? Como? 31 2) Numa reação enzimática, o valor de Vmax, mas não o de Km é diretamente proporcional à concentração da enzima? Justifique. 3) A velocidade inicial de uma reação enzimática em função da concentração do substrato S, na ausência e na presença dos inibidores A e B segue os dados da tabela abaixo: VELOCIDADE (µMOL/L X MIN) [S] (µM) SEM I Com Inibidor A Com Inibidor B 1,25 1,72 0,98 1,01 1,67 2,04 1,17 1,26 2,5 2,63 1,47 1,72 5,0 3,33 1,96 2,56 10,0 4,17 2,38 3,49 a) Qual é a classe dos inibidores A e B? b) Determine Vmax e Km na ausência e presença dos inibidores. 4) Utilizando-se dos valores de Km e Vmax determinados nas questões 1 e 3, esquematize num mesmo gráfico, para as duas reações, V em função da concentração de substrato, expressa em múltiplos de Km. No eixo dos Y ajuste arbitrariamente as escalas para cada reação fazendo coincidir os pontos de V = Vmax. Como são as curvas para duas reações? Justifique o resultado. 5) O que são enzimas alostéricas? Defina utilizando-se de gráficos esquemáticos de V em função de [S], compare uma enzima michaeliana (da questão 4) com uma enzima alostérica positiva e com uma enzima alostérica negativa. 32 MÓDULO 7: MECANISMOS DE CATÁLISE ENZIMÁTICA 1. Catálise acido/base – catálise por transferência de protons. A catálise ácida é um processo no qual a transferência parcial de prótons de um ácido para o estado de transição diminui a energia livre do estado de transição de uma reação. A reação pode ser também estimulada por uma catálise básica se a taxa de reação aumentar com a abstração de um próton por uma base. Algumas reações podem ser sujeitas simultaneamente a ambos os processos, caracterizando uma catálise ácido-base. Em reações catalisadas por enzimas os ácidos e bases catalisadores são grupos específicos ionizáveis da enzima localizados no seu sítio ativo/sítio catalítico. A mutarrotação da glicose (Figura 6) e a catálise da ribonuclease pancreática bovina A (RNase A) (Figura 7) são exemplos de catálise ácido-base. Figura 6. Mutarrotação da glicose. 35 2) Faça o gráfico da velocidade de uma reação enzimática em função do pH para uma enzima estável entre pHs 3 e 12, considerando que o substrato não possui grupos ionizáveis e a atividade enzimática exige no centro ativo uma carboxila (pKa = 5) desprotonada e um grupo amino (pKa = 9) protonado. 3) Definir catálise eletrostática. Procure um exemplo de uma enzima que utiliza esta estratégia. 4) Descrever o mecanismo empregado pelas serina proteases (tripsina, quimiotripsina, elastase, etc) para hidrolisar ligações peptídicas. Descrever todas as etapas da reação. Quais tipos de catálise são empregados em cada uma das etapas? MÓDULO 8: AÇÚCARES: ESTRUTURA E FUNÇÃO 1. Os carboidratos são compostos que apresentam a fórmula empírica (CH2O)n (n> ou = 3), sendo funcionalmente poliidroxialdeídos ou poliidroxicetonas. Os carboidratos mais simples são os monossacarídeos, que se apresentam na formas de aldoses ou cetoses, conforme o grupo funcional carbonílico que possuem, isto é, respectivamente, aldeído ou cetona. Há duas trioses: o gliceraldeído, uma aldotriose, e a diidroxiacetona, uma cetotriose (Figura 8). O gliceraldeído apresenta um carbono (C2) assimétrico, dando origem a dois isômeros opticos, as formas D e L (Figura 9). Já a diidroxiacetona não possui C assimétrico e, por isso, não mostra esse tipo de isomeria. Os outros monossacarídeos podem ser derivados pelo crescimento da cadeia destas duas trioses. A Figura 10 mostra a família D derivada do D- gliceraldeido, cujas fórmulas estruturais planares obedecem as regras de Fisher. Figura 8. Gliceraldeído e diidroxiacetona. Figura 9: Carbono quiral ou carbono assimétrico. 36 Figura 10. Família D derivada do D-gliceraldeído. Figura 11. Ciclização da D-glicose. 37 O aumento da cadeia do monossacarídeo leva ao aparecimento de novos Cs assimétricos e, portanto mais isômeros estruturais, também chamados estereoisômeros. O número de isômeros é dado pela expressão 2n onde n é o número de carbonos assimétricos. Por exemplo, em aldoexoses há 4 Cs assimétricos, logo o número de isômeros é 24 =16, sendo 8 da forma D e 8 da forma L. Mas, as estruturas lineares como representadas na Figura 10 tanto para pentoses como para hexoses são poucos estáveis em solução, formando estruturas cíclicas segundo a reação mostrada na Figura 11. Esta é uma reação bem conhecida da química orgânica, pela qual um álcool (OH) faz uma adição nucleofílica a carbonila de um aldeído, formando um composto de condensação da conhecido como semiacetal. No caso do exemplo da Figura 11 a hexose é a D-glicose e, como a figura mostra, a ciclização leva ao aparecimento de uma outra isomeria estrutural devido às duas posições possíveis do OH do C1 em relação ao plano do anel, gerando os isômeros α e β. É importante enfatizar que o OH do C1 não é quimicamente equivalente aos demais OHs que são alcoólicos, sendo por isso chamado de OH glicosídico. A existência do OH glicosídico permite que todos os monossarídeos sejam oxidados em condições brandas pelo reagente de Fehling, uma reação de oxido-reação na qual os OHs alcoólicos não participam. Figura 12. Nomenclatura para estereoisômeros.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved