Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Aula 02 - Conceitos iniciais (Continuação), Notas de aula de Engenharia Informática

Material para concursos sobre Raciocínio Lógico

Tipologia: Notas de aula

2010

Compartilhado em 08/11/2010

vanessa-faustino-luiz-5
vanessa-faustino-luiz-5 🇧🇷

4.6

(12)

85 documentos

Pré-visualização parcial do texto

Baixe Aula 02 - Conceitos iniciais (Continuação) e outras Notas de aula em PDF para Engenharia Informática, somente na Docsity! CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 1 AULA 2: CONCEITOS INICIAIS (Continuação) Olá, amigos! Retornamos hoje para dar seqüência aos Fundamentos da Lógica – conceitos iniciais – que demos início na aula passada. Convém sabermos que estas duas primeiras aulas são, por assim dizer, os pilares do curso inteiro. É possível que hoje tenhamos uma aula de muitas páginas, mas faremos o máximo esforço para que tudo seja explicado da forma mais minuciosa possível. Doravante, passaremos a ter o cuidado de numerar todas as tabelas do texto, a fim de facilitar futuras referências a qualquer uma delas. Comecemos com duas erratas da aula um. A primeira delas foi logo na primeira página, quando estávamos apresentando o conceito de proposição, e citamos alguns exemplos, chamando- as de proposições p, q e r. Pois bem, a premissa q tinha o texto: “5 < 8”. Acharam? Logo em seguida, dissemos que o valor lógico dessa proposição era falso (VL(q)=F)! Erramos! Obviamente que é verdadeiro que 5<8. Corrigiremos, trocando o sinal de ‘menor que’ pelo ‘maior que’ (>). E aí, sim, terá valor lógico falso a proposição “5 > 8”. A segunda correção diz respeito à última tabela que apresentamos na página 12, no momento em que estávamos comparando as tabelas-verdade que resultam das estruturas ~(p v q) e ~p ∧~q. Na ocasião, concluímos que: ~(p ∨ q) ~p ∧ ~q V V V V V V F F Ora, os resultados destas duas estruturas são, sim, iguais! Só que, na verdade, seus resultados são, corrigindo as tabelas acima, os seguintes: ~(p ∨ q) ~p ∧ ~q F F F F F F V V Correções feitas, passemos a uma breve revisão (breve mesmo!) do que vimos até aqui, e do que temos obrigação de saber até agora: REVISÃO DA AULA PASSADA: # Proposição: é toda sentença a qual poderá ser atribuído um valor lógico (verdadeiro ou falso); haverá proposições simples ou compostas. # As proposições compostas podem assumir diversos formatos, ou seja, diversas estruturas, dependendo do conectivo lógico que esteja unindo as suas proposições componentes. Assim, haverá proposições compostas chamadas conjunções (E), disjunções (OU), disjunções exclusivas (OU...OU...), condicionais (SE...ENTÃO...), e bicondicionais (...SE E SOMENTE SE...). # Para entendermos mais facilmente o funcionamento dos três primeiros tipos de proposições compostas (conjunção, disjunção e disjunção exclusiva), podemos fazer uma analogia com a promessa de um pai para um filho. Lembram-se? “Te darei uma bola e te darei uma bicicleta”; “te darei uma bola ou te darei uma bicicleta”, “ou te darei uma bola ou te darei uma bicicleta”. TABELA 01 TABELA 02 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 2 # Conjunção é aquela proposição composta que assume o formato “proposição p E proposição q”. Uma conjunção somente será verdadeira se ambas as sentenças componentes também forem verdadeiras. A tabela-verdade de uma conjunção será, portanto, a seguinte: p q p ∧ q V V V V F F F V F F F F Recordando: a promessa do pai só terá sido cumprida se as duas partes dela forem observadas! # Disjunção é a proposição composta que assume o formato “proposição p OU proposição q”. Para que uma disjunção seja verdadeira, basta que uma das sentenças componentes também o seja. A tabela-verdade de uma disjunção será, portanto, a seguinte: p q p ∨ q V V V V F V F V V F F F Recordando: basta o pai cumprir uma das partes da promessa e toda ela já terá sido cumprida! # Disjunção Exclusiva é a proposição que tem o formato “OU proposição p OU proposição q”. Na disjunção exclusiva, o cumprimento de uma parte da promessa exclui o cumprimento da outra parte. A tabela-verdade de uma disjunção exclusiva será, portanto, a seguinte: p q p ∨ q V V V V F F F V F F F V Recordando: a promessa do pai só é válida se ele der apenas um presente! # Condicional é a proposição composta que tem o formato “SE proposição p, ENTÃO proposição q”. Para o melhor entendimento deste tipo de estrutura, somente para efeitos didáticos, lembraremos da seguinte proposição: “Se nasci em Fortaleza, então sou cearense”. A estrutura condicional é de tal forma que “uma condição suficiente gera um resultado necessário”. Ora, o fato de alguém ter nascido em Fortaleza já é condição suficiente para o resultado necessário: ser cearense. Pensando desta forma, a única maneira de tal estrutura se tornar FALSA seria no caso em que existe a condição suficiente, mas o resultado (que deveria ser necessário!) não se verifica! Ou seja, só é falsa a condicional se a primeira proposição (condição suficiente) for VERDADEIRA e a segunda proposição (resultado necessário) for FALSA. A tabela-verdade de uma condicional será, portanto, a seguinte: p q p q V V V V F F F V V F F V TABELA 03 TABELA 04 TABELA 05 TABELA 06 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 5 Assim, para negar a seguinte sentença: “Se a baleia é um mamífero, então o papa é alemão” Faremos: “A baleia é uma mamífero E o papa não é alemão” Essencialmente, foi este o conteúdo de nossa primeira aula. Passemos a analisar algumas questões do dever de casa que ficou para vocês fazerem. RESOLUÇÃO DO DEVER DE CASA Resolveremos ainda hoje as oito questões que ficaram pendentes! Na seqüência, faremos algumas delas. As demais, em páginas mais adiante. Comecemos com a questão 2: 02. (Fiscal Recife/2003) Pedro, após visitar uma aldeia distante, afirmou: “Não é verdade que todos os aldeões daquela aldeia não dormem a sesta”. A condição necessária e suficiente para que a afirmação de Pedro seja verdadeira é que seja verdadeira a seguinte proposição: a) No máximo um aldeão daquela aldeia não dorme a sesta. b) Todos os aldeões daquela aldeia dormem a sesta. c) Pelo menos um aldeão daquela aldeia dorme a sesta. d) Nenhum aldeão daquela aldeia não dorme a sesta. e) Nenhum aldeão daquela aldeia dorme a sesta. Sol.: Ora, aqui percebemos que há uma proposição simples no enunciado, e que precisa ser analisada. Qual é essa proposição? A seguinte: “Não é verdade que todos os aldeões daquela aldeia não dormem a sesta” Se observarmos bem, veremos que esta sentença contém duas negações. Vejamos em destaque: “Não é verdade que todos os aldeões daquela aldeia não dormem a sesta” Também é fato que nosso cérebro trabalha mais facilmente com afirmações que com negações. Tiremos a prova! Vamos trocar essas expressões negativas da frase acima por afirmações correspondentes. Podemos, então, trocar “não é verdade” por “é mentira”. Todos concordam? É a mesma coisa? Claro! Trocaremos também “não dormem a sesta” por “ficam acordados”. Pode ser? Teremos: “É mentira que todos os aldeões daquela aldeia ficam acordados” Agora interpretemos a frase acima: ora, se é mentira que todos os aldeões ficam acordados, significa que pelo menos um deles dorme! Concordam? É a resposta da questão, opção C! Daqui, extrairemos uma lição: a palavra-chave da frase em questão é TODOS. É esta palavra que está sendo negada! E, conforme vimos, a negação de TODOS é PELO MENOS UM (=ALGUM). Podemos até criar a seguinte tabela: p ~p TODO A é B ALGUM A não é B ALGUM A é B NENHUM A é B TABELA 10 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 6 Questão semelhante já havia sido cobrada também pela Esaf. A frase em análise então era a seguinte: “Não é verdade que todas as pessoas daquela família não são magras”. Como interpretar essa frase? Do mesmo jeito: primeiramente, troquemos as partes negativas por afirmações correspondentes. Teríamos o seguinte: “É mentira que todas as pessoas daquela família são gordas”. Ora, se é mentira que todas são gordas, então é porque pelo menos uma delas é magra! Só isso e mais nada. Adiante! 03. (AFC/2002) Dizer que não é verdade que Pedro é pobre e Alberto é alto, é logicamente equivalente a dizer que é verdade que: a) Pedro não é pobre ou Alberto não é alto. b) Pedro não é pobre e Alberto não é alto. c) Pedro é pobre ou Alberto não é alto. d) se Pedro não é pobre, então Alberto é alto. e) se Pedro não é pobre, então Alberto não é alto. Sol.: Esta é bem simples! Trata-se da negação (“não é verdade que...) de uma conjunção (E). Ora, sabemos que na hora de negar uma conjunção, teremos: ~(p ∧ q) = ~p ∨ ~q Daí, negando a primeira parte, teremos: Pedro não é pobre. Negando a segunda parte: Alberto não é alto. Finalmente, trocando o E por um OU, concluiremos que: Não é verdade que Pedro é pobre e Alberto é alto é igual a: Pedro não é pobre ou Alberto não é alto. Resposta (letra A)! Deixemos a questão 4 para daqui a pouco. 05. (CVM/2000) Dizer que a afirmação “todos os economistas são médicos” é falsa, do ponto de vista lógico, equivale a dizer que a seguinte afirmação é verdadeira: a) pelo menos um economista não é médico b) nenhum economista é médico c) nenhum médico é economista d) pelo menos um médico não é economista e) todos os não médicos são não economistas Sol.: Esta questão agora se tornou muito fácil, após termos feito a questão dois. Aprendemos, inclusive com uma tabela apropriada, que a palavra TODOS é negada por PELO MENOS UM (=ALGUM). Daí, se o enunciado diz que é FALSA a sentença “Todos os economistas são médicos”, o que ela quer na verdade é que façamos a NEGAÇÃO desta frase! Ora, se é mentira que todos os economistas são médicos, é fácil concluirmos que pelo menos um economista não é médico! É nossa resposta – opção A! Pulemos a sexta, por enquanto! 07. (Fiscal Trabalho/98) A negação da afirmação condicional "se estiver chovendo, eu levo o guarda-chuva" é: a) se não estiver chovendo, eu levo o guarda-chuva b) não está chovendo e eu levo o guarda-chuva c) não está chovendo e eu não levo o guarda-chuva d) se estiver chovendo, eu não levo o guarda-chuva e) está chovendo e eu não levo o guarda-chuva Sol.: Esta também não traz grande dificuldade! O que a questão pede é a negação de uma condicional. Ora, já aprendemos como se faz isso: mantém-se a primeira parte E nega-se a segunda! Daí, concluiremos o seguinte: CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 7 "se estiver chovendo, eu levo o guarda-chuva" é igual a: “está chovendo E eu não levo o guarda-chuva” Resposta (letra E)! Ao longo desta aula, resolveremos as questões que ficaram faltando! # TABELAS-VERDADE: Trataremos agora um pouco mais a respeito de uma TABELA-VERDADE. Aprendemos que se trata de uma tabela mediante qual são analisados os valores lógicos de proposições compostas. Na aula passada, vimos que uma Tabela-Verdade que contém duas proposições apresentará exatamente um número de quatro linhas! Mas e se estivermos analisando uma proposição composta com três ou mais proposições componentes? Como ficaria a tabela-verdade neste caso? Generalizando para qualquer caso, teremos que o número de linhas de uma tabela-verdade será dado por: Nº de Linhas da Tabela-Verdade = 2 Nº de proposicões Ou seja: se estivermos trabalhando com duas proposições p e q, então a tabela-verdade terá 4 linhas, já que 22=4. E se estivermos trabalhando com uma proposição composta que tenha três componentes p, q e r? Quantas linhas terá essa tabela-verdade? Terá 8 linhas, uma vez que 23=8. E assim por diante. TABELAS-VERDADES PARA p E q: Trabalhando com duas proposições componentes, a estrutura inicial da tabela-verdade será sempre aquela que já aprendemos na aula passada. Qual seja: p q V V V F F V F F E a próxima coluna (ou próximas colunas) da tabela-verdade dependerá dos conectivos que estarão presentes na proposição composta. Já sabemos construir, pelo menos, cinco tabelas-verdade de proposições compostas! Claro! A tabela-verdade da conjunção, da disjunção, da disjunção exclusiva, da condicional e da bicondicional. Com este conhecimento prévio, já estamos aptos a construir as tabelas-verdade de qualquer outra proposição condicional formada por duas proposições componentes (p e q). Designaremos tal proposição composta da seguinte forma: P(p, q). Suponhamos, pois, que estamos diante da seguinte proposição composta: P(p, q)=~(p v ~q) ...e desejamos construir a sua tabela-verdade. Como seria? O início da tabela é, conforme sabemos, sempre o mesmo. Teremos: TABELA 11 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 10 5º Passo) Uma vez trabalhados os dois parênteses, faremos, por fim, a disjunção que os une. Teremos: (p ∧ ~q) (q ∧ ~p) (p ∧~q) v (q ∧~p) F F F V F V F V V F F F Se quiséssemos, poderíamos ter feito tudo em uma única tabela maior, da seguinte forma: TABELA 22 p q ~q p ∧ ~q ~p q ∧ ~p (p ∧ ~q) ∨ (q ∧ ~p) V V F F F F F V F V V F F V F V F F V V V F F V F V F F Pronto! Concluímos mais um problema. Já estamos craques em construir tabelas-verdades para proposições de duas sentenças. Mas, e se estivermos trabalhando com três proposições simples (p, q e r)? Como é que se faz essa tabela-verdade? TABELAS-VERDADE PARA TRÊS PROPOSICOES (p, q E r): A primeira coisa a saber é o número de linhas que terá esta tabela-verdade. Conforme já aprendemos, este cálculo será dado por Nº linhas = 2 Nº de proposições. Daí, teremos que haverá oito linhas (23=8) numa tabela-verdade para três proposições simples. Vimos que, para duas proposições, a tabela-verdade se inicia sempre do mesmo jeito. O mesmo ocorrerá para uma de três proposições. Terá sempre o mesmo início. E será o seguinte: p q r A coluna da proposição p será construída da seguinte forma: quatro V alternando com quatro F; a coluna da proposição q tem outra alternância: dois V com dois F; por fim, a coluna da proposição r alternará sempre um V com um F. Teremos, portanto, sempre a mesma estrutura inicial: p q r V V V V V F V F V V F F F V V F V F F F V F F F Saber construir esta tabela acima é obrigação nossa! Ela corresponde, como já foi dito, à estrutura inicial de uma tabela-verdade para três proposições simples! TABELA 21 TABELA 23 TABELA 24 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 11 Suponhamos que alguém (uma questão de prova, por exemplo!) nos peça que construamos a tabela-verdade da proposição composta seguinte: P(p,q,r)=(p ∧ ~q) (q v ~r) A leitura dessa proposição é a seguinte: Se p e não q, então q ou não r. Vamos fazer esse exercício? Começaremos sempre com a estrutura inicial para três proposições. Teremos: p q r V V V V V F V F V V F F F V V F V F F F V F F F Daí, já sabemos que existe uma ordem de precedência a ser observada, de modo que trabalharemos logo os parênteses da proposição acima. Começando pelo primeiro deles, faremos os seguintes passos: 1º Passo) Negação de q: P q r ~q V V V F V V F F V F V V V F F V F V V F F V F F F F V V F F F V 2º Passo) A conjunção do primeiro parênteses: (Só recordando: somente se as duas partes forem verdadeiras é que a conjunção (e) também o será!) p q r ~q p ∧ ~q V V V F F V V F F F V F V V V V F F V V F V V F F F V F F F F F V V F F F F V F 3º Passo) Trabalhando agora com o segundo parênteses, faremos a negação de r: p q r ~r V V V F V V F V V F V F V F F V F V V F F V F V F F V F F F F V TABELA 25 TABELA 26 TABELA 27 TABELA 28 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 12 4º Passo) A disjunção do segundo parênteses: Só recordando: basta que uma parte seja verdadeira, e a disjunção (ou) também o será! p q r ~r q v ~r V V V F V V V F V V V F V F F V F F V V F V V F V F V F V V F F V F F F F F V V 5º Passo) Finalmente, já tendo trabalhado os dois parênteses separadamente, agora vamos fazer a condicional que os une: Só recordando: a condicional só será falsa se tivermos VERDADEIRO na primeira parte e FALSO na segunda! p ∧ ~q q v ~r (p ∧ ~q) (q v ~r) F V V F V V V F F V V V F V V F V V F F V F V V Novamente, se assim o quiséssemos, poderíamos ter feito todo o trabalho em uma só tabela, como se segue: TABELA 31 p q r ~q p ∧ ~q ~r q ∨ ~r (p ∧ ~q) (q ∨ ~r) V V V F F F V V V V F F F V V V V F V V V F F F V F F V V V V V F V V F F F V V F V F F F V V V F F V V F F F V F F F V F V V V Pronto! Concluímos mais uma etapa! Já estamos aptos a construir qualquer tabela-verdade para proposições compostas de duas ou de três proposições componentes! Chegou o momento de passarmos a conhecer três outros conceitos: Tautologia, Contradição e Contingência. # TAUTOLOGIA: Uma proposição composta formada por duas ou mais proposições p, q, r, ... será dita uma Tautologia se ela for sempre verdadeira, independentemente dos valores lógicos das proposições p, q, r, ... que a compõem. Em palavras mais simples: para saber se uma proposição composta é uma Tautologia, construiremos a sua tabela-verdade! Daí, se a última coluna da tabela-verdade só apresentar verdadeiro (e nenhum falso), então estaremos diante de uma Tautologia. Só isso! Exemplo: A proposição (p ∧ q) → (p ∨ q) é uma tautologia, pois é sempre verdadeira, independentemente dos valores lógicos de p e de q, como se pode observar na tabela-verdade abaixo: TABELA 29 TABELA 30 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 15 Pronto! Matamos a charada! Como a última linha desta tabela-verdade só apresenta o valor lógico Verdadeiro, estamos inequivocamente diante de uma Tautologia. A alternativa correta é a letra B. Passemos a mais uma questão. (Fiscal Trabalho 98 ESAF) Um exemplo de tautologia é: a) se João é alto, então João é alto ou Guilherme é gordo b) se João é alto, então João é alto e Guilherme é gordo c) se João é alto ou Guilherme é gordo, então Guilherme é gordo d) se João é alto ou Guilherme é gordo, então João é alto e Guilherme é gordo e) se João é alto ou não é alto, então Guilherme é gordo Sol: Para simplificar e facilitar esta resolução, assumiremos as seguintes proposições simples: p : João é alto. q : Guilherme é gordo. Daí, utilizando estas definições feitas acima para as proposições p e q, as alternativas da questão poderão ser reescritas simbolicamente como: a) p → (p ∨ q) (=se João é alto, então João é alto ou Guilherme é gordo) b) p → (p ∧ q) (=se João é alto, então João é alto e Guilherme é gordo) c) (p ∨ q) → q (=se João é alto ou Guilherme é gordo, então Guilherme é gordo) d) (p ∨ q)→(p ∧ q) (=se João é alto ou Guilherme é gordo, então João é alto e Guilherme é gordo) e) (p ∨ ~p) → q (=se João é alto ou não é alto, então Guilherme é gordo) O que resta ser feito agora é testar as alternativas, procurando por aquela que seja uma Tautologia. Para isso, construiremos a tabela-verdade de cada opção de resposta. Teste da alternativa “a”: p → (p ∨ q) p q (p ∨ q) p → (p ∨ q) V V V V V F V V F V V V F F F V Pronto! Mal começamos, e já chegamos à resposta! Observemos que a última coluna da tabela-verdade acima só apresentou valores lógicos verdadeiros! Com isso, concluímos: a proposição da opção A – Se João é alto, então João é alto ou Guilherme é gordo – é uma Tautologia! Daí: Resposta: Letra A! Só para efeitos de treino, vamos testar também a alternativa B: Teste da alternativa B: p → (p ∧ q) p q (p ∧ q) p → (p ∧ q) V V V V V F F V F V F F F F F V TABELA 38 TABELA 39 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 16 Como podemos observar na última coluna da tabela-verdade acima, o valor lógico da proposição p → (p ∧ q) pode ser verdadeiro ou falso. Isto nos leva a concluir, portanto, que esta proposição não é uma tautologia, nem uma contradição, mas, sim, a chamada contingência. Antes de seguirmos adiante, façamos uma solução alternativa para a questão acima: Observem que em todas as alternativas aparece o conectivo “→”, ou seja, todas as proposições são condicionais. Na tabela verdade do conectivo “→” só temos o valor lógico falso quando na proposição condicional o antecedente for verdade e o conseqüente for falso. Sabendo que uma tautologia sempre tem valor lógico verdade, então dentre as proposições condicionais apresentadas nas alternativas, aquela em que nunca ocorrer o antecedente verdade e o conseqüente falso será uma tautologia. - Análise do item ‘a’: p → (p ∨ q) Vejam que quando o antecedente desta proposição for verdade, também o conseqüente será verdade, e assim a proposição nunca será falsa, logo esta proposição é uma tautologia. A questão terminou, mas vamos analisar os restantes. - Análise do item ‘b’: p → (p ∧ q) Vejam que quando o antecedente desta proposição for verdade, o conseqüente será verdade se q for verdade, e falso se q for falso. Assim, a proposição pode assumir os valores lógicos de verdade e falso. Não é uma tautologia. - Análise do item ‘c’: (p ∨ q) → q O antecedente desta proposição sendo verdade, o valor lógico de q pode ser verdade ou falso, e daí o conseqüente que é dado por q também pode ser verdade ou falso, logo concluímos que a proposição desta alternativa não é uma tautologia. - Análise do item ‘d’: (p ∨ q) → (p ∧ q) O antecedente desta proposição sendo verdade, os valores de p e q podem ser verdade ou falso, e portanto o conseqüente também pode ser verdade ou falso, logo concluímos que a proposição desta alternativa não é uma tautologia. - Análise do item ‘e’: (p ∨ ~p) → q Observem que o antecedente é sempre verdade independente do valor lógico de p, já o conseqüente pode assumir o valor lógico de verdade ou falso. Portanto, concluímos que a proposição desta alternativa não é uma tautologia. Passaremos agora a tratar de um tema da maior relevância no Raciocínio Lógico, e que, inclusive, já foi exaustivamente exigido em questões de provas recentes de concursos. Estamos nos referindo à Equivalência Lógica. Ou seja, vamos aprender a identificar quando duas proposições compostas são equivalentes uma à outra. Vamos lá! # PROPOSIÇÕES LOGICAMENTE EQUIVALENTES: Dizemos que duas proposições são logicamente equivalentes (ou simplesmente que são equivalentes) quando são compostas pelas mesmas proposições simples e os resultados de suas tabelas-verdade são idênticos. Uma conseqüência prática da equivalência lógica é que ao trocar uma dada proposição por qualquer outra que lhe seja equivalente, estamos apenas mudando a maneira de dizê-la. A equivalência lógica entre duas proposições, p e q, pode ser representada simbolicamente como: p ⇔ q , ou simplesmente por p = q. Começaremos com a descrição de algumas equivalências lógicas básicas, as quais convém conhecermos bem, a fim de as utilizarmos nas soluções de diversas questões. CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 17 Equivalências Básicas: 1ª) p e p = p Exemplo: André é inocente e inocente = André é inocente 2ª) p ou p = p Exemplo: Ana foi ao cinema ou ao cinema = Ana foi ao cinema 3ª) p e q = q e p Exemplo: o cavalo é forte e veloz = o cavalo é veloz e forte 4ª) p ou q = q ou p Exemplo: o carro é branco ou azul = o carro é azul ou branco 5ª) p ↔ q = q ↔ p Exemplo: Amo se e somente se vivo = Vivo se e somente se amo 6ª) p ↔ q = (p q) e (q p) Exemplo: Amo se e somente se vivo = Se amo então vivo, e se vivo então amo Para facilitar a nossa memorização, colocaremos essas equivalências na tabela seguinte: p e p = P p ou p = P p e q = q e p p ou q = q ou p p ↔ q = q ↔ p p ↔ q = (p → q) e (q → p) Equivalências da Condicional: As duas equivalências que se seguem são de fundamental importância. Inclusive, serão utilizadas para resolver algumas questões do dever de casa que ficaram pendentes. Estas equivalências podem ser verificadas, ou seja, demonstradas, por meio da comparação entre as tabelas-verdade. Ficam como exercício para casa estas demonstrações. São as seguintes as equivalências da condicional: 1ª) Se p, então q = Se não q, então não p. Exemplo: Se chove então me molho = Se não me molho então não chove 2ª) Se p, então q = Não p ou q. Exemplo: Se estudo então passo no concurso = Não estudo ou passo no concurso TABELA 40 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 20 Tivemos sorte de encontrar a resposta logo na primeira tentativa! Todavia, se não houvesse essa sentença entre as opções de resposta, teríamos que tentar a segunda equivalência da condicional, a qual resulta em uma disjunção. Teríamos, pois que: p q = ~p ou q. Daí: Se Pedro é economista, então Luísa é solteira = Pedro não é economista ou Luísa é solteira. Seria a segunda resposta possível. Pronto! Terminamos de resolver as questões que haviam ficado do dever de casa, mas ainda não terminamos a aula de hoje! Demos seqüência ao estudo das equivalências! Adiante! Equivalências com o símbolo da negação: Este tipo de equivalência já foi estudado por nós na primeira aula. Trata-se, tão somente, das negações das proposições compostas! Como tais equivalências já foram inclusive revisadas nesta aula de hoje, nos limitaremos apenas a reproduzi-las novamente. Teremos: ~(p e q) = ~p ou ~q ~(p ou q) = ~p e ~q ~(p → q) = p e ~q ~(p ↔ q) = [(p e ~q) ou (~p e q)] Talvez alguma dúvida surja em relação à última linha da tabela acima. Porém, basta nos lembrarmos do que foi aprendido também na última linha da tabela 38 (página 16): (p ↔ q) = (p q) e (q p) (Obs.: é por isso que a bicondicional tem esse nome: porque equivale a duas condicionais!) Daí, para negar a bicondicional acima, teremos na verdade que negar a sua conjunção equivalente. E para negar uma conjunção, já sabemos, negam-se as duas partes e troca-se o E por um OU. Fica também como tarefa para casa a demonstração desta negação da bicondicional. Ok? Outras equivalências: Algumas outras equivalências que podem ser relevantes são as seguintes: 1ª) p e (p ou q) = p Exemplo: Paulo é dentista, e Paulo é dentista ou Pedro é médico = Paulo é dentista 2ª) p ou (p e q) = p Exemplo: Paulo é dentista, ou Paulo é dentista e Pedro é médico = Paulo é dentista Por meio das tabelas-verdade, estas equivalências também podem ser facilmente demonstradas. Para auxiliar nossa memorização, criaremos a tabela seguinte: p e (p ou q) = p p ou (p e q) = p Equivalência entre “nenhum” e “todo”: Aqui temos uma equivalência entre dois termos muito freqüentes em questões de prova. É uma equivalência simples, e de fácil compreensão. Vejamos: TABELA 43 TABELA 44 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 21 1ª) Nenhum A é B = Todo A é não B Exemplo:Nenhum médico é louco = Todo médico é não louco (=Todo médico não é louco) 2ª) Todo A é B = Nenhum A é não B Exemplo: Toda arte é bela = Nenhuma arte é não bela (= Nenhuma arte não é bela) Colocando essas equivalências numa tabela, teremos: Nenhum A é B = Todo A é não B Todo A é B = Nenhum A é não B # LEIS ASSOCIATIVAS, DISTRIBUTIVAS E DA DUPLA NEGAÇÃO: Na seqüência, algumas leis que podem eventualmente nos ser úteis na análise de alguma questão. São de fácil entendimento, de modo que nos limitaremos a apresentá-las. Leis associativas: (p e q) e s = p e (q e s) (p ou q) ou s = p ou (q ou s) Leis distributivas: p e (q ou s) = (p e q) ou (p e s) p ou (q e s) = (p ou q) e (p ou s) Lei da dupla negação: ~(~p) = p Daí, concluiremos ainda que: S não é não P = S é P Todo S não é não P = Todo S é P Algum S não é não P = Algum S é P Nenhum S não é não P = Nenhum S é P Exemplos: 1) A bola de futebol não é não esférica = A bola de futebol é esférica 2) Todo número inteiro não é não racional = Todo número inteiro é racional 3) Algum número racional não é não natural = Algum número racional é natural 4) Nenhum número negativo não é não natural = Nenhum número negativo é natural TABELA 45 TABELA 46 TABELA 47 TABELA 48 TABELA 49 CURSO ONLINE – RACIOCÍNIO LÓGICO www.pontodosconcursos.com.br - Prof. Sérgio Carvalho & Prof. Weber Campos 22 Bem! Acreditamos que por hoje já houve uma dose suficiente de informações! A princípio, planejávamos uma aula ainda maior, mas decidimos ficar por aqui, e deixar que vocês tenham condições de ler com calma o conteúdo visto até este momento, e de fixar bem o que aprenderam. E não há jeito melhor no mundo de fixar o aprendizado do que resolvendo questões, não é mesmo? Por isso, trazemos na seqüência o Dever de Casa, para vocês se divertirem durante esta semana! Não deixem passar a oportunidade de tentar resolvê-las! Mesmo que surjam algumas dificuldades, não desanimem! Há muito mais mérito em tentar e não conseguir, do que em ficar esperando a resolução pronta na aula seguinte! Lembrem-se disso. E chega de lero-lero. Fiquem todos com Deus! Um grande abraço nosso! E estudem! DEVER DE CASA (Agente da Polícia Federal – 2004 – CESPE) Texto para os itens de 01 a 08 Considere que as letras P, Q, R e T representem proposições e que os símbolos ¬, ∧, ∨ e → sejam operadores lógicos que constroem novas proposições e significam não, e, ou e então, respectivamente. Na lógica proposicional, cada proposição assume um único valor (valor-verdade), que pode ser verdadeiro (V) ou falso (F), mas nunca ambos. Com base nas informações apresentadas no texto acima, julgue os itens a seguir. 01. Se as proposições P e Q são ambas verdadeiras, então a proposição (¬ P) ∨ (¬ Q) também é verdadeira. 02. Se a proposição T é verdadeira e a proposição R é falsa, então a proposição R → (¬ T) é falsa. 03. Se as proposições P e Q são verdadeiras e a proposição R é falsa, então a proposição (P ∧ R) → (¬ Q) é verdadeira. -------------------------------------- Considere as sentenças abaixo. i. Fumar deve ser proibido, mas muitos europeus fumam. ii. Fumar não deve ser proibido e fumar faz bem à saúde. iii. Se fumar não faz bem à saúde, deve ser proibido. iv. Se fumar não faz bem à saúde e não é verdade que muitos europeus fumam, então fumar deve ser proibido. v. Tanto é falso que fumar não faz bem à saúde como é falso que fumar deve ser proibido; conseqüentemente, muitos europeus fumam. Considere também que P, Q, R e T representem as sentenças listadas na tabela a seguir. P Fumar deve ser proibido. Q Fumar deve ser encorajado. R Fumar não faz bem à saúde. T Muitos europeus fumam. Com base nas informações acima e considerando a notação introduzida no texto, julgue os itens seguintes. 04. A sentença I pode ser corretamente representada por P ∧ (¬ T). 05. A sentença II pode ser corretamente representada por (¬ P) ∧ (¬ R). 06. A sentença III pode ser corretamente representada por R → P. 07. A sentença IV pode ser corretamente representada por (R ∧ (¬ T)) → P.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved