Isolation and expression analysis of two tomato ADP-glucosepyrophosphorylase S (large) subunit gene promoters

Isolation and expression analysis of two tomato ADP-glucosepyrophosphorylase S...

(Parte 3 de 3)

Sonnewald, Only one of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated level of sucrose, Mol. Gen. Genet. 224 (1990) 136–146. [15] S. Takeda, S. Mano, M. Ohto, K. Nakamuka, Inhibitors of protein phosphatases 1 and 2A block the sugar-inducible gene expression in plants, Plant Physiol. 106 (1994) 567–574. [16] P.A. Nakata, T.W. Okita, Differential regulation of ADP-glucose pyrophosphorylase in the sink and source tissue of potato, Plant Physiol. 108 (1995) 361–368. [17] L.N. Sokolov, A. Dejardin, L.A. Kleczkowski, Sugar and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress), Biochem. J. 336 (1998) 681–687. [18] X. Li, J. Xing, T.J. Gianfagna, H.W. Janes, Sucrose regulation of the expression of ADP-glucose pyrophosphorylase subunit genes in leaves and fruits, Plant Sci. 162 (2002) 239–244. [19] P. Geigenberger, L. Merlo, R. Reimholz, M. Stitt, When growing potato tubers are detached from their mother plant there is a rapid inhibition of starch synthesis, involving inhibition of ADP-glucose pyrophosphorylase, Planta 193 (1994) 486–493. [20] P.A. Nakata, J.M. Anderson, T.W. Okita, Structure and expression of the potato ADP-glucose pyrophosphorylase small subunit, J. Biol. Chem. 269 (1994) 30798–30807. [21] P. Crevillen, M. Ballicora, A. Merida, J. Preiss, M. Romero, The different large subunit isoform of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme, Biol. Chem. 278 (31) (2003) 28508– 28515.

[2] B. Muller-Rober, U. La Cognata, U. Sonnewald, L. Willmitzer, A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell selective expression in transgenic plants, Plant Cell 6 (1994) 601–612. [23] R.A. Jefferson, Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep. 5 (1987) 387–405. [24] R. Mantovani, A survey of 178 NF-Y binding CCAAT boxes, Nucleic

Acids Res. 26 (5) (1998) 1135–1143. [25] R. Mantovani, The molecular biology of the CCAAT-binding factor

NF-Y, Gene 239 (1) (1999) 15–27. [26] B. Forde, J. Freeman, J.E. Oliver, M. Pineda, Nuclear factors interact with conserved A/T-rich elements upstream of a nodule enhanced glutamine synthetase gene from French bean, Plant Cell 2 (1990) 925– 939. [27] A. Lovegrove, R. Hooley, Gibberellin and abscisic acid signaling in aleurone, Trends Plant Sci. 5 (2000) 102–110. [28] R. Hehl, E. Wingender, Database-assisted promoter analysis, Trends in

Plant Sci. 6 (6) (2001) 251–255. [29] J. Montgomery, V. Pollard, J. Deikman, R.L. Fischer, Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp, Plant Cell 5 (1993) 1049–1062. [30] A. Siedlecka, I. Ciereszko, E. Mellerowicz, J. Chen, The small subunit

ADP-glucose pyrophosphorylase (ApS) promoter mediates okadaic acid-sensitive uidA expression in starch-synthesizing tissues and cells in Arabidopsis, Planta 217 (2003) 184–192. [31] M. Nakamura, T. Tsunoda, J. Obokata, Photosynthetic nuclear genes generally lack TATA boxes: a tobacco photosystem I gene responds to light through an initiator, Plant J. 29 (2002) 1–10. [32] C. Liberati, A. Ronchi, P. Lievens, S. Ottolenghi, R. Mantovani, NF-Y organizes the g-globin CCAAT boxes region, J. Biol. Chem. 273 (1998) 16880–16889. [3] R. Mantovani, U. Pessara, F. Tronche, X. Li, A.M. Knapp, J.L.

Pasquali, C. Benoist, D. Mathis, Monoclonal antibodies to NF-Y define its function in MHC class I and albumin gene transcription, EMBO J. 1 (1992) 3315–32.

[34] Z. Duan, G. Stamatoyannopoulos, Q. Li, Role of NF-Y in in vivo regulation of the g-globin gene, Mol. Cell. Biol. 21 (2001) 3083–3095. [35] R.J. White, Gene Transcription, Blackwell Science, London; Malden,

MA, 2001 , p. 273. [36] J. Butler, J. Kadonaga, The RNA polymerase I core promoter: a key component in the regulation of gene expression, Genes Dev. 16 (2002) 2583–2592. [37] M.R. Olive, W.J. Peacock, E.S. Dennis, The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adh1 promoter, Nucleic Acids Res. 19 (1991) 7053–7060. [38] S. Smale, Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes, Biochim. Biophys. Acta 1351 (1997) 73–8. [39] M.Martinez-Trujillo,T.Chavez-Barcenas,V.Limones-Briones,J.Simpson, L. Herrera-Estrella, Functional analysis of the promoter of the rice sucrosephosphatesynthasegene(sps1),PlantSci.166 (2004)131–140. [40] T.W. Burke, J.T. Kadonaga, Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA- box-deficient promoters, Genes Dev. 10 (1996) 711–724. [41] E. Zeiger, L.D. Talbott, S. Frechilla, A. Srivastava, J.X. Zhu, The guard cell chloroplast: a perspective for the twenty-first century, New Phytol. 153 (2002) 415–424. [42] P. Lu, W.H. Outlaw Jr., B.G. Smith, G.A. Freed, A new mechanism for the regulation of stomatal aperture size in intact leaves, Plant Physiol. 114 (1997) 109–118. [43] R. Stadler, M. Buttner, P. Ache, R. Hedrich, N. Ivashikina, M. Melzer,

S.M. Shearson, S.M. Smith, N. Sauer, Diurnal and light-regulated expression of AtSTP1 in guard cells of Arabidopsis, Plant Physiol. 133 (2003) 528–537. [4] J.C.V. Vu, G. Yelenosky, R.E. McDonald, Proteins, non-structural carbohydrates and organic acids in the flowers of sweet orange (Citrus sinensis (L.) osbeck), Environ. Exptl. Bot. 30 (1990) 505–513. [45] S.N. Vemmos, G.K. Goldwin, The photosynthetic activity of Cox’s

Orange Pippin apple flowers in relation to fruit setting, Ann. Bot. 73 (1994) 385–391.

(Parte 3 de 3)

Comentários