(Parte 2 de 6)

São compatíveis com óleo mineral, óleo alquilbenzeno e com os materiais existentes. Obs: somente na aplicação do R-407C, deve ser trocado o óleo mineral por óleo Poliolester;

A carga de fluido refrigerante do equipamento com fluido alternativo é 80% da carga de fluido original. Obs: A carga do fluido refrigerante deve ser feita somente na forma líquida.

Compatibilidade de alguns fluidos com óleos lubrificantes

Durante os últimos anos, vários refrigerantes alternativos foram avaliados e o R134a, por apresentar propriedades físicas e termodinâmicas relativamente semelhantes às do R12 e por não conter Cloro, tem sido considerado o substituto do R12 nas suas aplicações.

Mais recentemente, outro fator ambiental, não menos importante que a destruição da camada de ozônio, tem sido considerado: o potencial de aquecimento global, mais conhecido como efeito estufa.

Dentre os refrigerantes alternativos que atendem ambas características ambientais, estão os hidrocarbonos. Estes refrigerantes não tinham até então sido considerados uma alternativa à substituição do R12, pois são inflamáveis.

Na tabela a seguir são apresentadas as principais propriedades físicas dos refrigerantes hidrocarbonos comparadas às do R12 e R134a.

Propriedades físicas do R12, R134a e refrigerantes hidrocarbonos.

Como pode-se verificar na tabela acima, os refrigerantes hidrocarbonos apresentam menor peso molecular quando comparados ao do R12 e R134a. Isto é

devido à ausência de halogêneos como cloro e flúor na sua estrutura molecular, que é composta apenas de carbono e hidrogênio.

Tal característica torna os refrigerantes hidrocarbonos menos agressivos ao meio ambiente, como mostra a tabela abaixo.

Impacto ambiental dos refrigerantes hidrocarbonos, R12 e R134a

Observa-se na tabela acima que o refrigerante R134a, não destrói a camada de ozônio (ODP = 0). Tal característica deve-se à ausência de cloro nas suas moléculas.

Entretanto os refrigerantes propano e butano exercem efeito desprezível (GWP < 5) sobre o aquecimento da Terra, ao contrário do R12 e R134a. Outro fator ambiental favorável aos refrigerantes propano e butano é seu menor tempo de vida na atmosfera. Os principais impactos de cada refrigerante hidrocarbono sobre o compressor e o dispositivo de expansão dos sistemas de refrigeração, baseados na análise teórica do ciclo ASHRAE, são resumidos na tabela abaixo.

O ozônio é formado quando as moléculas de oxigênio absorvem parte da radiação ultravioleta proveniente do sol, ocasionando a separação das moléculas em dois átomos de oxigênio. Estes átomos por sua vez, juntam-se com outras moléculas de oxigênio, formando assim o ozônio (O3), que contém três átomos de oxigênio. Aproximadamente 90% do ozônio da terra está localizado em uma camada natural, logo acima da superfície terrestre conhecida como estratosfera. Esta camada natural atua como um escudo protetor contra a radiação ultravioleta.

A primeira preocupação sobre a provável destruição da camada de ozônio pelos CFC’s foi levantada com a publicação da teoria de que os átomos de cloro liberados pelos CFC’s poderiam migrar até a estratosfera, destruindo as moléculas de ozônio

(Molina e Rowland, 1974), conforme mostra a figura abaixo. Alguns dos CFC’s têm um tempo de vida na atmosfera superior a 120 anos, isto é, eles não se dissociam na baixa atmosfera (troposfera). Como resultado, os CFC’s migram vagarosamente para a estratosfera onde são atingidos por maiores níveis de radiação, liberando o cloro, que por sua vez livre, liga-se repetidamente com moléculas de ozônio provocando a separação dos átomos de oxigênio da molécula em questão.

Com a ocorrência da destruição do ozônio, maiores níveis de radiação tendem a penetrar na superfície terrestre. Além disso, devido ao longo tempo de vida dos CFC’s na atmosfera e ao fato de que um átomo de cloro pode destruir repetidamente milhares de moléculas de ozônio, serão necessárias muitas décadas para que a camada de ozônio retorne aos níveis de concentração anteriores, mesmo após a eliminação completa dos

CFC’s.

Desde que a teoria de destruição da camada de ozônio foi publicada pela primeira vez, pesquisas científicas têm mostrado uma preocupação geral com o aumento da concentração de cloro na estratosfera, que destruindo o ozônio, tem como resultado danos à saúde e ao meio ambiente, como por exemplo:

Aumento dos casos de câncer de pele; Danos aos olhos (aumento dos casos de cataratas);

Enfraquecimento do sistema imunológico; Danos às plantações;

Danos aos organismos aquáticos (algas marinhas); Aumento da temperatura ambiente.

Como o ozônio é destruído?

Primeiramente, a luz ultravioleta quebra a ligação de um átomo de cloro da molécula de CFC. Em seguida, o átomo de cloro ataca a molécula do ozônio, quebrando a ligação entre os átomos. Forma-se uma molécula de O2 e uma de monóxido de cloro. O monóxido de cloro é instável, tem sua ligação quebrada e forma-se novamente cloro livre, que vai atacar e destruir outra molécula de ozônio, repetindo-se o processo, ver figura abaixo.

Classificação da Refrigeração

A área de refrigeração cresceu de tal maneira no último século que acabou por ocupar os mais diversos campos. Para conveniência de estudos, as aplicações da refrigeração podem ser classificadas dentro das seguintes categorias: doméstica, comercial, industrial, para transporte e para condicionamento de ar. A refrigeração doméstica abrange principalmente a fabricação de refrigeradores de uso doméstico e de freezers. A capacidade dos refrigeradores domésticos varia muito, com temperaturas na faixa de -8°C a -18°C (no compartimento de congelados) e +2°C a +7°C (no compartimento dos produtos resfriados).

A refrigeração comercial abrange os refrigeradores especiais ou de grande porte usados em restaurantes, sorveterias, bares, açougues, laboratórios, etc. As temperaturas de congelamento e estocagem situam-se, geralmente, entre -5°C a -30°C.

Como regra geral, os equipamentos industriais são maiores que os comerciais (em tamanho) e têm como característica marcante o fato de requererem um operador de serviço. São aplicações típicas industriais as fábricas de gelo, grandes instalações de empacotamento de gêneros alimentícios (carnes, peixes, aves), cervejarias, fábricas de laticínios, de processamento de bebidas concentradas e outras. A refrigeração marítima refere-se à refrigeração a bordo de embarcações e inclui, por exemplo, a refrigeração para barcos de pesca e para embarcações de transporte de cargas perecíveis.

A refrigeração de transporte relaciona-se com equipamentos de refrigeração em caminhões e vagões ferroviários refrigerados. Como podemos observar, as aplicações da refrigeração são as mais variadas, sendo de certa forma bastante difícil estabelecer de forma precisa a fronteira de cada divisão.

Sistema de Compressão Mecânica de Vapor (CMV)

Pode-se entender a lógica de funcionamento dos principais sistemas de refrigeração atuais estudando o funcionamento de um refrigerador doméstico

comum, também conhecido como sistema de compressão mecânica de vapor (figura ao lado). Ele funciona a partir da aplicação dos conceitos de calor e trabalho, utilizando-se de um fluido refrigerante. O fluido refrigerante, como dito anteriormente, é uma substância que, circulando dentro de um circuito fechado, é capaz de retirar calor de um meio enquanto se vaporiza a baixa pressão. Este fluido entra no evaporador a baixa pressão, na forma de mistura de líquido mais vapor, e retira energia do meio interno refrigerado (energia dos alimentos) enquanto passa para o estado de vapor. O vapor entra no compressor onde é comprimido e bombeado, tornando-se vapor superaquecido e deslocando-se para o condensador, que tem a função de liberar a energia retirada dos alimentos e a resultante do trabalho de compressão para o meio exterior. O fluido, ao liberar energia, passa do estado de vapor superaquecido para líquido (condensação) e finalmente entra no dispositivo de expansão, onde tem sua pressão reduzida, para novamente ingressar no evaporador e repetir-se assim o ciclo. Esse processo é ilustrado através da figura a seguir.

Ciclo de compressão mecânica de vapor Os detalhes do funcionamento de uma geladeira é descrito a seguir:

COMPRESSOR: sua principal função é succionar o fluido refrigerante a baixa pressão da linha de sucção e comprimí-lo em direção ao condensador a alta pressão e alta temperatura na fase gasosa (vapor super aquecido2).

CONDENSADOR: através do condensador e suas aletas, o fluido refrigerante proveniente do compressor a alta temperatura, efetua a troca térmica com o ambiente externo, liberando o calor absorvido no evaporador e no processo de compressão. Nesta fase, ocorre uma transformação de vapor superaquecido para líquido sub resfriado3 a alta pressão.

FILTRO SECADOR: exerce duas funções importantes: A primeira é reter partículas sólidas que em circulação no circuito, podem ocasionar obstrução ou danos à partes mecânicas do compressor. A segunda é absorver totalmente a

umidade residual do circuito que porventura não tenha sido removida pelo processo de vácuo, evitando danos ao sistema como: formação de ácidos, corrosão, aumento das pressões e obstrução do tubo capilar por congelamento da umidade. TUBO CAPILAR: é um tubo de cobre com diâmetro reduzido que tem como função receber o fluido refrigerante do condensador e promover a perda de carga do fluido refrigerante separando os lados de alta e de baixa pressão.

EVAPORADOR: recebe o fluido refrigerante proveniente do tubo capilar, no estado líquido a baixa pressão e baixa temperatura. Nesta condição, o fluido evapora absorvendo o calor da superfície da tubulação do evaporador, ocorrendo a transformação de líquido sub resfriado para vapor saturado a baixa pressão. Este efeito acarreta o abaixamento da temperatura do ambiente interno do refrigerador.

2 Vapor superaquecido é quando o vapor está a uma temperatura maior do que a temperatura de saturação, que é a temperatura na qual se dá a vaporização de uma substância pura a uma dada pressão. 3 Líquido sub resfriado é quando a temperatura do líquido é menor do que a temperatura de saturação para a pressão existente. Se a pressão for maior do que a pressão de saturação para a temperatura dada, o líquido é chamado de líquido comprimido.

De maneira similar funcionam também os grandes sistemas de refrigeração, como câmaras frigoríficas. O que difere os sistemas pequenos dos de grande porte é o número de unidades compressoras, evaporadoras, de expansão e condensadoras envolvidas, que nestes últimos podem ser múltiplos, bem como o sistema de controle, que pode alcançar elevada complexidade.

Sistema de Refrigeração por Absorção

O ciclo frigorífico por absorção de amônia difere do ciclo por compressão de vapor na maneira pela qual a compressão é efetuada. No ciclo de absorção, o vapor de amônia a baixa pressão é absorvido pela água e a solução líquida é bombeada a uma pressão superior por uma bomba de líquido. A figura abaixo, mostra um arranjo esquemático dos elementos essenciais deste ciclo.

Ciclo de refrigeração de absorção de amônia.

O vapor de amônia a baixa pressão, que deixa o evaporador, entra no absorvedor onde é absorvido pela solução fraca de amônia. Esse processo ocorre a uma temperatura levemente acima daquela do meio e deve ser transferido calor ao meio durante esse processo. A solução forte de amônia é então bombeada através de um trocador de calor ao gerador (onde são mantidas uma alta pressão e uma alta temperatura). Sob essas condições, o vapor de amônia se separa da solução em conseqüência da transferência de calor da fonte de alta temperatura. O vapor de amônia vai para o condensador, onde é condensado, como no sistema de compressão de vapor, e então se dirige para a válvula de expansão e para o evaporador. A solução fraca de amônia retorna ao absorvedor através do trocador de calor.

A característica particular do sistema de absorção consiste em requerer um consumo muito pequeno de trabalho porque o processo de bombeamento envolve um

e com variações desprezíveis de energias cinéticas e potencial, o trabalho é igual a

líquido. Isso resulta do fato de que, para um processo reversível, em regime permanente

relativamente alta (100 a 200 °C). O equipamento envolvido num sistema de absorção é um tanto maior que num sistema de compressão de vapor e pode ser justificado economicamente apenas nos casos onde é disponível uma fonte térmica adequada e que, de outro modo, seria desperdiçada.

Refrigeração Termoelétrica

Em 1821, Seebeck observou que, em um circuito fechado constituído por dois metais diferentes, uma corrente elétrica circula, sempre que as junções sejam mantidas a temperaturas diferentes. Em 1834, Peltier observou o efeito inverso. Isto é, fazendo-se circular uma corrente elétrica na mesma direção da F.E.M. gerada pelo efeito Seebeck, verifica-se o esfriamento do ponto de junção, e vice-versa. Em 1857, Willian Tomphson

(Parte 2 de 6)

Comentários