Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Apostila de Pneumática, Notas de estudo de Engenharia Mecânica

Apostila de Pneumática

Tipologia: Notas de estudo

Antes de 2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 03/04/2008

ana-paula-bittencourt-7
ana-paula-bittencourt-7 🇧🇷

5

(1)

11 documentos

Pré-visualização parcial do texto

Baixe Apostila de Pneumática e outras Notas de estudo em PDF para Engenharia Mecânica, somente na Docsity! Training Tecnologia Pneumática Industrial Apostila M1001 BR Agosto 2000 EAR EBAH Ns ii Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Pense em Qualidade, Pense Parker Você pode ter certeza de que sendo certificada pela ISO 9001 e QS-9000, a Parker: - Tem implementado um sistema de garantia de qualida- de documentado, avaliado e aprovado. Assim você não precisa inspecionar e testar os produtos recebidos. - Trabalha com fornecedores qualificados e aplica o princí- pio de perda zero em todo o processo de produção. Todos os componentes agregados ao produto satisfazem os mais altos requisitos de qualidade. - Trabalha para garantir que o projeto do produto atenda a qualidade requerida. O trabalho realizado com garantia de qualidade oferece soluções racionais e reduz custos. - Previne as não conformidades dos processos em todos os estágios, com qualidade permanente e conforme especificações. - Tem como objetivo permanente o aumento da eficiência e a redução de custos sendo que, como cliente, isto lhe proporciona maior competitividade. - Trabalha para atender suas expectativas da melhor forma possível, oferecendo sempre o produto adequado, com a melhor qualidade, preço justo e no prazo conveniente. Para você, cliente Parker, isto não é nenhuma novidade. Qualidade Parker, sem dúvida, uma grande conquista! Para nós da Parker, a qualidade é alcançada quando suas expectativas são atendidas, tanto em relação aos produtos e suas características, quanto aos nossos serviços. Nosso maior objetivo é corresponder a todas as suas expectativas da melhor maneira possível. A Parker Hannifin implementou substanciais modifica- ções, em sua organização e métodos de trabalho, a fim de satisfazer os requisitos do Sistema de Garantia de Qualidade ISO 9001e QS-9000. Este sistema controla a garantia de qualidade dos processos através de toda a organização, desde o projeto e planejamento, passando pelo suprimento e produção, até a distribuição e serviços. A Parker Hannifin está certificada pelo ABS - Quality Evaluations, Inc. desde 13/05/94 na ISO 9001 e em 26/11/99 teve seu certificado graduado para a norma automotiva QS-9000 Terceira Edição. Este certificado é a certeza de que a Parker trabalha ativa e profissionalmente para garantir a qualidade de seus produtos e serviços e a sua garantia é segurança de estar adquirindo a melhor qualidade possível. Isto significa que como cliente você pode ter total credibi- lidade em nós como seu fornecedor, sabendo que iremos atender plenamente as condições previamente negociadas. ADVERTÊNCIA SELEÇÃO IMPRÓPRIA, FALHA OU USO IMPRÓPRIO DOS PRODUTOS E/OU SISTEMAS DESCRITOS NESTE CATÁLOGO OU NOS ITENS RELACIONADOS PODEM CAUSAR MORTE, DANOS PESSOAIS E/OU DANOS MATERIAIS. Este documento e outras informações contidas neste catálogo da Parker Hannifin Ind. e Com. Ltda. e seus Distribuidores Autorizados, fornecem opções de produtos e/ou sistemas para aplicações por usuários que tenham habilidade técnica. É importante que você analise os aspectos de sua aplicação, incluindo consequências de qualquer falha, e revise as informações que dizem respeito ao produto ou sistemas no catálogo geral da Parker Hannifin Ind. e Com. Ltda. Devido à variedade de condições de operações e aplicações para estes produtos e sistemas, o usuário, através de sua própria análise e teste, é o único responsável para fazer a seleção final dos produtos e sistemas e também para assegurar que todo o desempenho, segurança da aplicação e cuidados sejam atingidos. Os produtos aqui descritos com suas características, especificações, desempenhos e disponibilidade de preço são objetos de mudança pela Parker Hannifin Ind. e Com. Ltda., a qualquer hora, sem prévia notificação. ! Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 3 Training Índice 1 • Introdução .................................................................................................................................................... 4 2 • Implantação ................................................................................................................................................. 5 3 • Produção e Distribuição ...................................................................................................................... 10 4 • Unidade de Condicionamento (Lubrefil) ....................................................................................... 25 5 • Válvulas de Controle Direcional ....................................................................................................... 39 6 • Elementos Auxiliares ............................................................................................................................ 67 7 • Geradores de Vácuo, Ventosas ........................................................................................................ 79 8 • Atuadores Pneumáticos ...................................................................................................................... 85 9 • Método de Movimento (Intuitivo) .................................................................................................... 118 10 • Exercícios Práticos ........................................................................................................................... 122 11• Simbologia dos Componentes ....................................................................................................... 147 Tecnologia Pneumática Industrial 4 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining "Pelas razões mencionadas e à vista, posso chegar à conclusão de que o homem dominará e poderá elevar-se sobre o ar mediante grandes asas construídas por si, contra a resistência da gravidade". A frase, de Leonardo Da Vinci, demonstra apenas uma das muitas possibilidades de aproveitamento do ar na técnica, o que ocorre hoje em dia em grande escala. Como meio de racionalização do trabalho, o ar comprimido vem encontrando, cada vez mais, campo de aplicação na indústria, assim como a água, a energia elétrica, etc. Somente na segunda metade do século XIX é que o ar comprimido adquiriu importância industrial. No entanto, sua utilização é anterior a Da Vinci, que em diversos inventos dominou e usou o ar. No Velho Testamento, são encontradas referências ao emprego do ar comprimido: na fundição de prata, ferro, chumbo e estanho. A história demonstra que há mais de 2000 anos os técnicos construíam máquinas pneumáticas, produzindo energia pneumática por meio de um pistão. Como instrumento de trabalho utilizavam um cilindro de madeira dotado de êmbolo. Os antigos aproveitavam ainda a força gerada pela dilatação do ar aquecido e a força produzida pelo vento. Em Alexandria (centro cultural vigoroso no mundo helênico), foram construídas as primeiras máquinas reais, no século III a.C.. Neste mesmo período, Ctesibios fundou a Escola de Mecânicos, também em Alexandria, tornando- se, portanto, o precursor da técnica para comprimir o ar. A Escola de Mecânicos era especializada em Alta Mecânica, e eram construídas máquinas impulsionadas por ar comprimido. No século III d.C., um grego, Hero, escreveu um trabalho em dois volumes sobre as aplicações do ar comprimido e do vácuo. Contudo, a falta de recursos materiais adequados, e mesmo incentivos, contribuiu para que a maior parte destas primeiras aplicações não fosse prática ou não pudesse ser convenientemente desenvolvida. A técnica era extremamente depreciada, a não ser que estivesse a serviço de reis e exércitos, para aprimoramento das máquinas de guerra. Como consequência, a maioria das informações perdeu-se por séculos. Durante um longo período, o desenvolvimento da energia pneumática sofreu paralisação, renascendo apenas nos séculos XVI e XVII, com as descobertas dos grandes pensadores e cientistas como Galileu, Otto Von Guericke, Robert Boyle, Bacon e outros, que passaram a observar as leis naturais sobre compressão e expansão dos gases. Leibinz, Huyghens, Papin e Newcomem são considerados os pais da Física Experimental, sendo que os dois últimos consideravam a pressão atmosférica como uma força enorme contra o vácuo efetivo, o que era objeto das Ciências Naturais, Filosóficas e da Especulação Teológica desde Aristóteles até o final da época Escolástica. Encerrando esse período, encontra-se Evangelista Torricelli, o inventor do barômetro, um tubo de mercúrio para medir a pressão atmosférica. Com a invenção da máquina a vapor de Watts, tem início a era da máquina. No decorrer dos séculos, desenvolveram-se várias maneiras de aplicação do ar, com o aprimoramento da técnica e novas descobertas. Assim, foram surgindo os mais extraordinários conhecimentos físicos, bem como alguns instrumentos. Um longo caminho foi percorrido, das máquinas impulsionadas por ar comprimido na Alexandria aos engenhos pneumo-eletrônicos de nossos dias. Portanto, o homem sempre tentou aprisionar esta força para colocá-la a seu serviço, com um único objetivo: controlá-la e fazê-la trabalhar quando necessário. Atualmente, o controle do ar suplanta os melhores graus da eficiência, executando operações sem fadiga, economizando tempo, ferramentas e materiais, além de fornecer segurança ao trabalho. O termo pneumática é derivado do grego Pneumos ou Pneuma (respiração, sopro) e é definido como a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia pneumática em energia mecânica, através dos respectivos elementos de trabalho. 1. Introdução Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 5 Training 2. Implantação Vantagens: 1) - Incremento da produção com investimento relati- vamente pequeno. 2) - Redução dos custos operacionais. A rapidez nos movimentos pneumáticos e a liberta- ção do operário (homem) de operações repetitivas possibilitam o aumento do ritmo de trabalho, aumento de produtividade e, portanto, um menor custo operacional. 3) - Robustez dos componentes pneumáticos. A robustez inerente aos controles pneumáticos torna-os relativamente insensíveis a vibrações e golpes, permitindo que ações mecânicas do pró- prio processo sirvam de sinal para as diversas sequências de operação. São de fácil manutenção. 4) - Facilidade de implantação. Pequenas modificações nas máquinas conven- cionais, aliadas à disponibilidade de ar comprimi- do, são os requisitos necessários para implanta- ção dos controles pneumáticos. 5) - Resistência a ambientes hostis. Poeira, atmosfera corrosiva, oscilações de tempe- ratura, umidade, submersão em líquidos, raramen- te prejudicam os componentes pneumáticos, quando projetados para essa finalidade. 6) - Simplicidade de manipulação. Os controles pneumáticos não necessitam de ope- rários superespecializados para sua manipula- ção. 7) - Segurança. Como os equipamentos pneumáticos envolvem sempre pressões moderadas, tornam-se seguros contra possíveis acidentes, quer no pessoal, quer no próprio equipamento, além de evitarem proble- mas de explosão. 8) - Redução do número de acidentes. A fadiga é um dos principais fatores que favorecem acidentes; a implantação de controles pneumáti- cos reduz sua incidência (liberação de operações repetitivas). Limitações: 1) - O ar comprimido necessita de uma boa prepara- ção para realizar o trabalho proposto: remoção de impurezas, eliminação de umidade para evitar corrosão nos equipamentos, engates ou trava- mentos e maiores desgastes nas partes móveis do sistema. 2) - Os componentes pneumáticos são normalmente projetados e utilizados a uma pressão máxima de 1723,6 kPa. Portanto, as forças envolvidas são pequenas se comparadas a outros sistemas. Assim, não é conveniente o uso de controles pneu- máticos em operação de extrusão de metais. Provavelmente, o seu uso é vantajoso para recolher ou transportar as barras extrudadas. 3) - Velocidades muito baixas são difíceis de ser obti- das com o ar comprimido devido às suas proprie- dades físicas. Neste caso, recorre-se a sistemas mistos (hidráulicos e pneumáticos). 4) - O ar é um fluido altamente compressível, portanto, é impossível se obterem paradas intermediárias e velocidades uniformes. O ar comprimido é um poluidor sonoro quando são efetuadas exaustões para a atmosfera. Esta poluição pode ser evitada com o uso de silenciado- res nos orifícios de escape. Propriedades Físicas do Ar Apesar de insípido, inodoro e incolor, percebemos o ar através dos ventos, aviões e pássaros que nele flutuam e se movimentam; sentimos também o seu impacto sobre o nosso corpo. Concluimos facilmente que o ar tem existência real e concreta, ocupando lugar no espaço. Tecnologia Pneumática Industrial 8 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Pelo fato do ar ter peso, as camadas inferiores são comprimidas pelas camadas superiores. Assim as camadas inferiores são mais densas que as superiores. Concluímos, portanto, que um volume de ar compri- mido é mais pesado que o ar à pressão normal ou à pressão atmosférica. Quando dizemos que um litro de ar pesa 1,293 X 10-3 Kgf ao nível do mar, isto significa que, em altitudes diferentes, o peso tem valor diferente. Pressão Atmosférica Sabemos que o ar tem peso, portanto, vivemos sob esse peso. A atmosfera exerce sobre nós uma força equivalente ao seu peso, mas não a sentimos, pois ela atua em todos os sentidos e direções com a mesma intensidade. A pressão atmosférica varia proporcionalmente à alti- tude considerada. Esta variação pode ser notada. A Pressão Atmosférica Atua em Todos os Sentidos e Direções Altitude Pressão Altitude Pressão m Kgf/cm2 m Kgf/cm2 0 1,033 1000 0,915 100 1,021 2000 0,810 200 1,008 3000 0,715 300 0,996 4000 0,629 400 0,985 5000 0,552 500 0,973 6000 0,481 600 0,960 7000 0,419 700 0,948 8000 0,363 800 0,936 9000 0,313 900 0,925 10000 0,270 Variação da Pressão Atmosférica com Relação à Altitude Medição da Pressão Atmosférica Nós geralmente pensamos que o ar não tem peso. Mas, o oceano de ar cobrindo a terra exerce pressão sobre ela. Torricelli, o inventor do barômetro, mostrou que a pressão atmosférica pode ser medida por uma coluna de mercúrio. Enchendo-se um tubo com mercúrio e invertendo-o em uma cuba cheia com mercúrio, ele descobriu que a atmosfera padrão, ao nível do mar, suporta uma coluna de mercúrio de 760 mm de altura. A pressão atmosférica ao nível do mar mede ou é equivalente a 760 mm de mercúrio. Qualquer elevação acima desse nível deve medir evidentemente menos do que isso. Num sistema hidráulico, as pressões acima da pressão atmosférica são medidas em kgf/ cm2. As pressões abaixo da pressão atmosférica são medidas em unidade de milímetros de mercúrio. 0,710 kgf/cm2 1,033 kgf/cm2 1,067 kgf/cm2 76 cm Pressão Atmosférica ao Nível do Mar Barômetro Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 9 Training P1V1 = P2V2 T1 T2 De acordo com esta relação são conhecidas as três variáveis do gás. Por isso, se qualquer uma delas so- frer alteração, o efeito nas outras poderá ser previsto. Efeito Combinado entre as Três Variáveis Físicas Princípio de Pascal Constata-se que o ar é muito compressível sob ação de pequenas forças. Quando contido em um recipiente fechado, o ar exerce uma pressão igual sobre as paredes, em todos os sentidos. Por Blaise Pascal temos: "A pressão exercida em um líquido confinado em forma estática atua em todos os sentidos e direções, com a mesma intensidade, exercendo forças iguais em áreas iguais". Princípio de Blaise Pascal 1 - Suponhamos um recipiente cheio de um líquido, o qual é praticamente incompressível; 2 - Se aplicarmos uma força de 10 Kgf num êmbolo de 1 cm2 de área; 3 - O resultado será uma pressão de 10 Kgf/cm2 nas paredes do recipiente. p = F A No S.I. F - Newton (Força) P - Newton/m2 (Pressão) A - m2 (Área) No MKS* F - kgf (Força) P - kgf/cm2 (Pressão) A - cm2 (Área) Temos que: 1 kgf = 9,8 N Nota: Pascal não faz menção ao fator atrito, existente quando o líquido está em movimento, pois baseia-se na forma estática e não nos líquidos em movimento. Efeitos Combinados entre as 3 Variáveis Físicas do Gás Lei Geral dos Gases Perfeitos As leis de Boyle-Mariotte, Charles e Gay Lussac referem-se a transformações de estado, nas quais uma das variáveis físicas permanece constante. Geralmente, a transformação de um estado para outro envolve um relacionamento entre todas, sendo assim, a relação generalizada é expressa pela fórmula: T1 V1 P1 Mesma Temperatura: Volume Diminui - Pressão Aumenta T2 V2 P2 Mesmo Volume: Pressão Aumenta - Temperatura Aumenta e Vice-Versa T3 V3 P3 Mesma Pressão: Volume Aumenta - Temperatura Aumenta e Vice-Versa T4 V4 P4 Tecnologia Pneumática Industrial 10 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining 3. Produção e Distribuição Nota: Em nosso livro, encontraremos, daqui para adiante, figuras e desenhos que foram ilustrados em cores. Essas cores não foram estabelecidas aleatoriamente. Um circuito pneumático ou hidráulico pode ser mais facilmente interpretado quando trabalhamos com "cores técnicas", colorindo as linhas de fluxo, com o objetivo de identificar o que está ocorrendo com o mesmo ou qual função que este desenvolverá. As cores utilizadas para esse fim são normalizadas, porém existe uma diversificação em função da norma seguida. Apresentamos abaixo as cores utilizadas pelo ANSI (American National Standard Institute), que substitui a organização ASA: sua padronização de cores é bem completa e abrange a maioria das necessidades de um circuito. Vermelho Indica pressão de alimentação, pressão normal do sis- tema, é a pressão do processo de transformação de energia; ex.: compressor. Violeta Indica que a pressão do sistema de transformação de energia foi intensificada; ex.: multiplicador de pressão. Laranja Indica linha de comando, pilotagem ou que a pressão básica foi reduzida; ex.: pilotagem de uma válvula. Amarelo Indica uma restrição no controle de passagem do fluxo; ex.: utilização de válvula de controle de fluxo. Azul Indica fluxo em descarga, escape ou retorno; ex.: exaustão para atmosfera. Verde Indica sucção ou linha de drenagem; ex.: sucção do compressor. Branco Indica fluido inativo; ex.: armazenagem. Elementos de Produção de Ar Comprimido - Compressores Definição Compressores são máquinas destinadas a elevar a pressão de um certo volume de ar, admitido nas condições atmosféricas, até uma determinada pressão, exigida na execução dos trabalhos realizados pelo ar comprimido. Classificação e Definição Segundo os Princípios de Trabalho São duas as classificações fundamentais para os princípios de trabalho. Deslocamento Positivo Baseia-se fundamentalmente na redução de volume. O ar é admitido em uma câmara isolada do meio exte- rior, onde seu volume é gradualmente diminuído, processando-se a compressão. Quando uma certa pressão é atingida, provoca a abertura de válvulas de descarga, ou simplesmente o ar é empurrado para o tubo de descarga durante a contínua diminuição do volume da câmara de compressão. Deslocamento dinâmico A elevação da pressão é obtida por meio de conversão de energia cinética em energia de pressão, durante a passagem do ar através do compressor. O ar admitido é colocado em contato com impulsores (rotor laminado) dotados de alta velocidade. Este ar é acelerado, atingindo velocidades elevadas e consequentemente os impulsores transmitem energia cinética ao ar. Posteriormente, seu escoamento é retardado por meio de difusores, obrigando a uma elevação na pressão. Difusor É uma espécie de duto que provoca diminuição na velocidade de escoamento de um fluido, causando aumento de pressão. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 13 Training Compressor de Duplo Efeito - Compressor Tipo Cruzeta Este compressor é assim chamado por ter duas câma- ras, ou seja, as duas faces do êmbolo aspiram e com- primem. O virabrequim está ligado a uma cruzeta por uma biela; a cruzeta, por sua vez, está ligada ao êmbolo por uma haste. Desta maneira consegue transmitir movimento alternativo ao êmbolo, além do que, a força de empuxo não é mais transmitida ao cilindro de compressão e sim às paredes guias da cruzeta. O êmbolo efetua o movimento descendente e o ar é admitido na câmara superior, enquanto que o ar contido na câmara inferior é comprimido e expelido. Procedendo-se o movimento oposto, a câmara que havia efetuado a admissão do ar realiza a sua compressão e a que havia comprimido efetua a admissão. Os movimentos prosseguem desta maneira, durante a marcha do trabalho. Complementação sobre os Compressores Cilindros (Cabeçotes) São executados, geralmente, em ferro fundido perlítico de boa resistência mecânica, com dureza suficiente e boas características de lubrificação devido à presença de carbono sob a forma de grafite. Pode ser fundido com aletas para resfriamento com ar, ou com paredes duplas para resfriamento com água (usam-se geralmente o bloco de ferro fundido e cami- sas de aço). A quantidade de cilindros com camisas determina o número de estágios que podem ser: Ciclo de Trabalho de um Compressor de Pistão de Duplo Efeito Simbologia Êmbolo (pistão) O seu formato varia de acordo com a articulação existente entre ele e a biela. Nos compressores de S.E., o pé da biela se articula diretamente sobre o pistão e este, ao subir, provoca empuxo na parede do cilindro. Em consequência, o êmbolo deve apresentar uma superfície de contato suficiente. No caso de D.E., o empuxo lateral é suporta- do pela cruzeta e o êmbolo é rigidamente preso à haste. Os êmbolos são feitos de ferro fundido ou ligas de alumínio. Simbologia Pistão de Simples Efeito Pistão de Duplo Efeito A SE DE B Tecnologia Pneumática Industrial 14 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Sistema de Refrigeração dos Compressores (Resfriamento Intermediário) Remove o calor gerado entre os estágios de compres- são, visando: - Manter baixa a temperatura das válvulas, do óleo lubrificante e do ar que está sendo comprimido (com a queda de temperatura do ar a umidade é removida). - Aproximar a compressão da isotérmica, embora esta dificilmente possa ser atingida, devido à pequena superfície para troca de calor. - Evitar deformação do bloco e cabeçote, devido às temperaturas. - Aumentar a eficiência do compressor. O sistema de refrigeração compreende duas fases: Resfriamento dos cilindros de compressão Resfriamento do Resfriador Intermediário Um sistema de refrigeração ideal é aquele em que a temperatura do ar na saída do resfriador intermediário é igual à temperatura de admissão deste ar. O resfriamento pode ser realizado por meio de ar em circulação, ventilação forçada e água, sendo que o resfriamento à água é o ideal porque provoca condensação de umidade; os demais não provocam condensação. Resfriamento à Água Os blocos dos cilindros são dotados de paredes duplas, entre as quais circula água. A superfície que exige um melhor resfriamento é a do cabeçote, pois permanece em contato com o gás ao fim da compressão. No resfriador intermediário empregam-se, em geral, tubos com aletas. O ar a ser resfriado passa em torno dos tubos, transferindo o calor para a água em circulação. Esta construção é preferida, pois permite maior vazão e maior troca de calor. A água utilizada para este fim deve ter baixa temperatura, pressão suficiente, estar livre de impure- zas e ser mole, isto é, conter pouco teor de sais de cálcio ou outras substâncias. O processo de resfriamento se inicia, geralmente, pela circulação de água através da câmara de baixa pressão, entrando posteriormente em contato com o resfriador intermediário. Além de provocar o resfria- mento do ar, uma considerável quantidade de umidade é retida, em consequência da queda de temperatura provocada no fluxo de ar proveniente do estágio de baixa pressão. Em seguida, a água é dirigida para a câmara de alta pressão, sendo eliminada do interior do compressor, indo para as torres ou piscinas de resfriamento. Aqui, todo o calor adquirido é eliminado da água, para que haja condições de reaproveitamento. Determinados tipos de compressores necessitam de grandes quanti- dades de água e, portanto, não havendo um reaprovei- tamento, haverá gastos. Este reaproveitamento se faz mais necessário quando a água disponível é fornecida racionalmente para usos gerais. Os compressores refrigeradores à água necessitam atenção constante, para que o fluxo refrigerante não sofra qualquer interrupção, o que acarretaria um aumento sensível na temperatura de trabalho. Determinados tipos de compressores possuem, no sistema de resfriamento intermediário, válvulas termos- táticas, visando assegurar o seu funcionamento e protegendo-o contra a temperatura excessiva, por falta d'água ou outro motivo qualquer. O resfriamento inter- mediário pela circulação de água é o mais indicado. Resfriamento a Ar Compressores pequenos e médios podem ser, vanta- josamente, resfriados a ar num sistema muito prático, particularmente em instalações ao ar livre ou onde o calor pode ser retirado facilmente das dependências. Nestes casos, o resfriamento a ar é a alternativa conve- niente. Existem dois modos básicos de resfriamento por ar : Circulação - os cilindros e cabeçotes, geralmente, são aletados a fim de proporcionar maior troca de calor, o que é feito por meio da circulação do ar ambiente e com auxílio de hélices nas polias de transmissão. Ventilação Forçada - a refrigeração interna dos cabeçotes e resfriador intermediário é conseguida através de ventilação forçada, ocasionada por uma ventoinha, obrigando o ar a circular no interior do com- pressor. Sistema de Refrigeração à Água em um Compressor de Dois Estágios e Duplo Efeito Resfriador Intermediário Ar Ar Água Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 15 Training Manutenção do Compressor Esta é uma tarefa importante dentro do setor indus- trial. É imprescindível seguir as instruções recomenda- das pelo fabricante que, melhor do que ninguém, conhece os pontos vitais de manutenção. Um plano semanal de manutenção será previsto, e nele será programada uma verificação no nível de lubri- ficação, nos lugares apropriados e, particularmente, nos mancais do compressor, motor e no carter. Neste mesmo prazo será prevista a limpeza do filtro de ar e a verificação experimental da válvula de segurança, para comprovação do seu real funcionamento. Será prevista também a verificação da tensão das correias. Periodicamente, será verificada a fixação do volante sobre o eixo de manivelas. Considerações Sobre Irregularidades na Compressão Como na compressão o ar é aquecido, é normal um aquecimento do compressor. Porém, às vezes o aquecimento exagerado pode ser devido a uma das seguintes causas: a) Falta de óleo no carter b) Válvulas presas c) Ventilação insuficiente d) Válvulas sujas e) Óleo do carter viscoso demais f) Válvulas de recalque quebradas g) Filtro de ar entupido Em caso de "batidas" ou barulho anormal, observar os itens seguintes: a) Carvão no pistão b) Folga ou desgaste nos pinos que prendem as buchas e os pistões c) Jogo nos mancais das buchas no eixo das manivelas d) Desgaste nos mancais principais e) Válvulas mal assentadas f) Volante solto Se os períodos de funcionamento são mais longos que os normais, isto pode ser devido a: a) Entupimento do filtro de ar b) Perda de ar nas linhas c) Válvulas sujas ou emperradas d) Necessidade de maior capacidade de ar Preparação do ar Comprimido Umidade O ar atmosférico é uma mistura de gases, principal- mente de oxigênio e nitrogênio, e contém contaminan- tes de três tipos básicos: água, óleo e poeira. As partículas de poeira, em geral abrasivas, e o óleo queimado no ambiente de lubrificação do compres- sor, são responsáveis por manchas nos produtos. A água é responsável por outra série de inconvenientes que mencionaremos adiante. O compressor, ao admitir ar, aspira também os seus compostos e, ao comprimir, adiciona a esta mistura o calor sob a forma de pressão e temperatura, além de adicionar óleo lubrificante. Os gases sempre permanecem em seu estado nas temperaturas e pressões normais encontradas no emprego da pneumática. Componentes com água sofrerão condensação e ocasionarão problemas. Sabemos que a quantidade de água absorvida pelo ar está relacionada com a sua temperatura e volume. A maior quantidade de vapor d'água contida num volu- me de ar sem ocorrer condensação dependerá da temperatura de saturação ou ponto de orvalho a que está submetido este volume. No ar comprimido temos ar saturado. O ar estará satu- rado quando a pressão parcial do vapor d'água for igual à pressão de saturação do vapor d'água, à temperatura local. O vapor é superaquecido quando a pressão par- cial do vapor d'água for menor que a pressão de satura- ção. Enquanto tivermos a presença de água em forma de vapor normalmente superaquecido, nenhum proble- ma ocorrerá. Analisemos agora: um certo volume de ar está satura- do com vapor d'água, isto é, sua umidade relativa é 100%; comprimimos este volume até o dobro da pres- são absoluta, o seu volume se reduzirá à metade. Logicamente, isto significará que sua capacidade de reter vapor d'água também foi reduzida à metade devido ao aumento da pressão e redução do seu volu- me. Então o excesso de vapor será precipitado como água. Isto ocorre se a temperatura for mantida constante durante a compressão, ou seja, processo isotérmico de compressão. Entretanto, isso não acontece; verifica-se uma elevação considerável na temperatura durante a compressão. Como foi mencionado anteriormente, a capacidade de retenção da água pelo ar está relacionada com a temperatura, sendo assim, não haverá precipitação no interior das câmaras de compressão. A precipitação de água ocorrerá quando o ar sofrer um resfriamento, seja no resfriador ou na linha de distribuição. Isto explica porque no ar comprimido existe sempre Tecnologia Pneumática Industrial 18 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Desumidificação do Ar A presença de umidade no ar comprimido é sempre prejudicial para as automatizações pneumáticas, pois causa sérias consequências. É necessário eliminar ou reduzir ao máximo esta umidade. O ideal seria eliminá-la do ar comprimido de modo absoluto, o que é praticamente impossível. Ar seco industrial não é aquele totalmente isento de água; é o ar que, após um processo de desidratação, flui com um conteúdo de umidade residual de tal ordem que possa ser utilizado sem qualquer inconveniente. Com as devidas preparações, consegue-se a distribuição do ar com valor de umidade baixo e tolerável nas aplicações encontradas. A aquisição de um secador de ar comprimido pode figurar no orçamento de uma empresa como um alto investimento. Em alguns casos, verificou-se que um secador chegava a custar 25% do valor total da instalação de ar. Mas cálculos efetuados mostravam também os prejuízos causados pelo ar úmido: substituição de componentes pneumáticos, filtros, válvulas, cilindros danificados, impossibilidade de aplicar o ar em determinadas operações como pintura, pulverizações e ainda mais os refugos causados na produção de produtos. Concluiu-se que o emprego do secador tornou-se altamente lucrativo, sendo pago em pouco tempo de trabalho, considerando-se somente as peças que não eram mais refugadas pela produção. Os meios utilizados para secagem do ar são múltiplos. Vamos nos referir aos três mais importantes, tanto pelos resultados finais obtidos quanto por sua maior difusão. Secagem por Refrigeração O método de desumidificação do ar comprimido por refrigeração consiste em submeter o ar a uma tempe- ratura suficientemente baixa, a fim de que a quantidade de água existente seja retirada em grande parte e não prejudique de modo algum o funcionamento dos equipamentos, porque, como mencionamos anterior- mente, a capacidade do ar de reter umidade está em função da temperatura. Além de remover a água, provoca, no compartimento de resfriamento, uma emulsão com o óleo lubrificante do compressor, auxiliando na remoção de certa quan- tidade. O método de secagem por refrigeração é bastante simples. O ar comprimido entra, inicialmente, em um pré-resfria- dor (trocador de calor) (A), sofrendo uma queda de temperatura causada pelo ar que sai do resfriador prin- cipal (B). No resfriador principal o ar é resfriado ainda mais, pois está em contato com um circuito de refrigeração. Durante esta fase, a umidade presente no A.C. forma pequenas gotas de água corrente chamadas conden- sado e que são eliminadas pelo separador (C), onde a água depositada é evacuada através de um dreno (D) para a atmosfera. A temperatura do A.C. é mantida entre 0,65 e 3,2oC no resfriador principal, por meio de um termostato que atua sobre o compressor de refrigeração (E). O A.C. seco volta novamente ao trocador de calor inicial (A), causando o pré-resfriamento no ar úmido de entrada, coletando parte do calor deste ar. O calor adquirido serve para recuperar sua energia e evitar o resfriamento por expansão, que ocasionaria a formação de gelo, caso fosse lançado a uma baixa temperatura na rede de distribuição, devido à alta velocidade. Secagem por Refrigeração Simbologia Ar Úmido Pré-Resfriador Ar Seco Resfriador Principal Separador C D Dreno Condensado Freon Bypass Compressor de RefrigeraçãoE A B Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 19 Training Secagem Por Absorção É a fixação de um absorto, geralmente líquido ou gaso- so, no interior da massa de um absorto sólido, resul- tante de um conjunto de reações químicas. Em outras palavras, é o método que utiliza em um circuito uma substância sólida ou líquida, com capacidade de absorver outra substância líquida ou gasosa. Este processo é também chamado de Processo Químico de Secagem, pois o ar é conduzido no inte- rior de um volume atráves de uma massa higroscópica, insolúvel ou deliquescente que absorve a umidade do ar, processando-se uma reação química. As substâncias higroscópicas são classificadas como insolúveis quando reagem quimicamente com o va- por d'água, sem se liquefazerem. São deliquescentes quando, ao absorver o vapor d'água, reagem e tornam- se líquidas. Secagem por Absorção Simbologia As principais substâncias utilizadas são: Cloreto de Cálcio, Cloreto de Lítio, Dry-o-Lite. Com a consequente diluição das substâncias, é neces- sária uma reposição regular, caso contrário o processo torna-se deficiente. A umidade retirada e a substância diluída são deposita- das na parte inferior do invólucro, junto a um dreno, de onde são eliminadas para a atmosfera. Secagem Por Adsorção É a fixação das moléculas de um adsorvato na superfí- cie de um adsorvente geralmente poroso e granulado, ou seja, é o processo de depositar moléculas de uma substância (ex. água) na superfície de outra substân- cia, geralmente sólida (ex.SiO 2 ). Este método também é conhecido por Processo Físico de Secagem, porém seus detalhes são desconhecidos. É admitido como teoria que na superfície dos corpos sólidos existem forças desbalanceadas, influenciando moléculas líqui- das e gasosas através de sua força de atração; admite- se, portanto, que as moléculas (adsorvato) são adsor- vidas nas camadas mono ou multimoleculares dos corpos sólidos, para efetuar um balanceamento se- melhante à Lei dos Octetos dos átomos. O processo de adsorção é regenerativo; a substância adsorvente, após estar saturada de umidade, permite a liberação de água quando submetida a um aquecimento regenerativo. Secagem por Adsorção Simbologia Esquematização da Secagem por Adsorção Ar Seco Pastilhas Dessecantes Ar Úmido Condensado Drenagem Ar Seco Ar Úmido RegenerandoSecando Adsorvente Regenerando Secando Ar Úmido Ar Seco Tecnologia Pneumática Industrial 20 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Para secar o ar existem dois tipos básicos de secadores: Torres Duplas: é o tipo mais comum. As torres são preenchidas com Óxido de Silício SiO 2 (Silicagel), Alu- mina Ativa Al 2 O 3 , Rede Molecular (Na Al O 2 Si O 2 ) ou ainda Sorbead. Através de uma válvula direcional, o ar úmido é orienta- do para uma torre, onde haverá a secagem do ar. Na outra torre ocorrerá a regeneração da substância adsorvente, que poderá ser feita por injeção de ar quente; na maioria dos casos por resistores e circula- ção de ar seco. Havendo o aquecimento da substância, provocaremos a evaporação da umidade. Por meio de um fluxo de ar seco a água em forma de vapor é arrastada para a atmosfera. Terminado um período de trabalho preestabelecido, há inversão nas função das torres, por controle manual ou automático na maioria dos casos; a torre que secava o ar passa a ser regenerada e outra inicia a secagem. Ao realizar-se a secagem do ar com as diferentes subs- tâncias, é importante atentar para máxima temperatura do ar seco, como também para a temperatura de regeneração da substância. Estes são fatores que devem ser levados em conta para um bom desem- penho do secador. Na saída do ar deve ser prevista a colocação de um filtro para eliminar a poeira das substâncias, prejudi- cial para os componentes pneumáticos, bem como deve ser montado um filtro de Carvão Ativo antes da entrada do secador, para eliminar os resíduos de óleo, que, em contato com as substâncias de secagem, causam sua impregnação, reduzindo consideravel- mente o seu poder de retenção de umidade. Como vimos, é de grande importância a qualidade do ar que será utilizado. Esta qualidade poderá ser obtida desde que os condicionamentos básicos do ar compri- mido sejam concretizados, representando menores ín- dices de manutenção, maior durabilidade dos compo- nentes pneumáticos, ou seja, será obtida maior lucrati- vidade em relação à automatização efetuada. Esquematização da Produção, Armazenamento e Condicionamento do Ar Comprimido 1 - Filtro de Admissão 2 - Motor Elétrico 3 - Separador de Condensado 4 - Compressor 5 - Reservatório 6 - Resfriador Intermediário 7 - Secador 8 - Resfriador Posterior 1 2 3 4 8 6 5 7 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 23 Training tipo. Os pontos de drenagem devem se situar em todos os locais baixos da tubulação, fim de linha, onde houver elevação de linha, etc. Nestes pontos, para auxiliar a eficiência da drenagem, podem ser construídos bolsões, que retêm o condensado e o encaminham para o purgador. Estes bolsões, construídos, não devem possuir diâmetros menores que o da tubulação. O ideal é que sejam do mesmo tamanho. Prevenção e Drenagem para o Condensado Como mencionamos, restará no ar comprimido uma pequena quantidade de vapor de água em suspensão, e os pontos de drenagem comuns não conseguirão provocar sua eliminação. Com este intuito, podem-se instalar separadores de condensado, cujo princípio de funcionamento é simples: obrigar o fluxo de ar comprimido a fazer mudanças de direção; o ar muda facilmente, porém as gotículas de umidade chocam-se contra os defleto- res e neles aderem, formando gotas maiores, que escorrem para o dreno. Vazamentos As quantidades de ar perdidas através de pequenos furos, acoplamentos com folgas, vedações defeituo- sas, etc., quando somadas, alcançam elevados valores. A importância econômica desta contínua perda de ar torna-se mais evidente quando comparada com o consumo de um equipamento e a potência neces- sária para realizar a compressão. Vazamento e Perda de Potência em Furos Tomadas de Ar Devem ser sempre feitas pela parte superior da tubulação principal, para evitar os problemas de condensado já expostos. Recomenda-se ainda que não se realize a utilização direta do ar no ponto termi- nal do tubo de tomada. No terminal, deve-se colocar uma pequena válvula de drenagem e a utilização deve ser feita um pouco mais acima, onde o ar, antes de ir para a máquina, passa através da unidade de condicio- namento. mm pol m3/s c.f.m Cv kW 3 1/8 0,01 21 4,2 3,1 5 3/16 0,027 57 11,2 8,3 10 3/18 0,105 220 44 33 Potência Necessária para Compressão Diâmetro do Furo Escape do Ar em 588,36 kPa Tamanho Real 85 psi 1 3/64 0,001 2 0,4 0,3 Ar Comprimido Separador Armazenagem de Condensados Drenos Automáticos Inclinação 0,5 a 2% do Comprimento Comprimento Purgadores Unidade de Condicionamento (Utilização) Tecnologia Pneumática Industrial 24 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Desta forma, um vazamento na rede representa um consumo consideralvemente maior de energia, que pode ser verificado através da tabela. É impossível eliminar por completo todos os vazamen- tos, porém estes devem ser reduzidos ao máximo com uma manutenção preventiva do sistema, de 3 a 5 vezes por ano, sendo verificados, por exemplo: substituição de juntas de vedação defeituosa, engates, mangueiras, tubos, válvulas, aperto das conexões, restauração das vedações nas uniões roscadas, eliminação dos ramais de distribuição fora de uso e outras que podem aparecer, dependendo da rede construída. Tubulações Secundárias A seleção dos tubos que irão compor a instalação secundária e os materiais de que são confeccionados são fatores importantes, bem como o tipo de acessório ou conexão a ser utilizado. Devem-se ter materiais de alta resistência, durabilidade, etc. O processo de tubulação secundária sofreu uma evolução bastante rápida. O tubo de cobre, até bem pouco tempo, era um dos mais usados. Atualmente ele é utilizado em instalações mais específicas, monta- gens rígidas e locais em que a temperatura e a pressão são elevadas. Hoje são utilizados tubos sintéticos, os quais proporcio- nam boa resistência mecânica, apresentando uma elevada força de ruptura e grande flexibilidade. São usados tubos de polietileno e tubos de nylon, cujas características são: Polietileno - aplicação de vácuo até pressões de 700kPa e temperatura de trabalho de -37°C a 40°C. Nylon - é mais resistente que o polietileno, sendo mais recomendado para aplica- ção de vácuo até 1700 kPa e tempera- tura de 0°C a 70°C. Conexões para Tubulações Secundárias A escolha das conexões que serão utilizadas num circuito é muito importante. Devem oferecer recursos de montagem para redução de tempo, ter dimensões compactas e não apresentar quedas de pressão, ou seja, possuir máxima área de passagem para o fluido. Devem também ter vedação perfeita, compatibilidade com diferentes fluidos industriais, durabilidade e permitir rápida remoção dos tubos em casos de manutenção, sem danificá-los. As conexões para tubulações secundárias podem ser múltiplas, espigões, conexão com anel apressor ou olivas etc. Dependendo do tipo de conexão utilizado, o tempo de montagem é bem elevado, devido às diversas opera- ções que uma única conexão apresenta: ser roscada no corpo do equipamento, roscar a luva de fixação do tubo, ou antes, posicionar corretamente as olivas. Deve haver um espaço razoável entre as conexões, para permitir sua rotação. Em alguns casos, isso não é possível. Estes meios de ligação, além de demorados, danificam o tubo, esmagando, dilatando ou cortando. Sua remo- ção é difícil, sendo necessário, muitas vezes, cortar o tubo, trocar as olivas e as luvas de fixação do tubo; isso quando a conexão não é totalmente perdida. Uma nova concepção em conexões, para atender a todas as necessidades de instalação de circuitos pneumáticos, controle e instrumentação e outros, são as conexões instantâneas/semelhantes a um engate rápido. Conexões Instantâneas Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 25 Training 4. Unidade de Condicionamento (Lubrefil) Filtragem de Ar Os sistemas pneumáticos são sistemas abertos: o ar, após ser utilizado, é exaurido para a atmosfera, en- quanto que a alimentação aspira ar livre constante- mente. Este ar, por sua vez, está sujeito à contamina- ção, umidade e às impurezas procedentes da rede de distribuição. A maioria destas impurezas é retida, como já observa- mos nos processos de preparação, mas partículas pequenas ficam suspensas e são arrastadas pelo fluxo de ar comprimido, agindo como abrasivos nas partes móveis dos elementos pneumáticos quando solicitada a sua utilização. A filtragem do ar consiste na aplicação de dispositivos Após passar por todo o processo de produção, trata- mento e distribuição, o ar comprimido deve sofrer um último condicionamento, antes de ser colocado para trabalhar, a fim de produzir melhores desempenhos. Neste caso, o beneficiamento do ar comprimido con- siste no seguinte: filtragem, regulagem da pressão e introdução de uma certa quantidade de óleo para a lubrificação de todas as partes mecânicas dos componentes pneumáticos. A utilização desta unidade de serviço é indispensável em qualquer tipo de sistema pneumático, do mais simples ao mais complexo. Ao mesmo tempo em que permite aos componentes trabalharem em condições favoráveis, prolonga a sua vida útil. Uma duração prolongada e funcionamento regular de qualquer componente em um circuito dependem, an- tes de mais nada, do grau de filtragem, da isenção de umidade, da estabilidade da pressão de alimentação do equipamento e da lubrificação das partes móveis. Isso tudo é literalmente superado quando se aplicam nas instalações dos dispositivos, máquinas, etc., os componentes de tratamento preliminar do ar comprimi- do após a tomada de ar: Filtro, Válvula Reguladora de Pressão (Regulador) e Lubrificador, que reunidos for- mam a Unidade de Condicionamento ou Lubrefil. capazes de reter as impurezas suspensas no fluxo de ar, e em suprimir ainda mais a umidade presente. É, portanto, necessário eliminar estes dois problemas ao mesmo tempo. O equipamento normalmente utilizado para este fim é o Filtro de Ar, que atua de duas formas distintas: Pela ação da força centrífuga. Pela passagem do ar através de um elemento filtrante, de bronze sinterizado ou malha de nylon. Unidade de Condicionamento ou Lubrefil Simbologia Tecnologia Pneumática Industrial 28 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Drenos dos Filtros Drenos são dispositivos fixados na parte inferior dos copos, que servem para eliminar o condensado e as impurezas, retidos pela ação de filtragem. Podem ser manuais ou automáticos. Dreno Manual Em presença do condensado permanece inativo, retendo-o no interior do copo. Para eliminar o conden- sado retido é necessária a interferência humana, que comanda manualmente a abertura de um obturador, criando uma passagem pela qual a água e as impure- zas são escoadas por força da pressão do ar atuante no interior do copo. Extraídas as impurezas, o ar escapa e o obturador deve ser recolocado em sua posição inicial. Dreno Automático Utilizado para eliminar o condensado retido no interior do copo do filtro, sem necessidade de interferência humana. O volume de água condensada, à medida que é removido pelo filtro, acumula-se na zona neutra do interior do copo, até provocar a elevação de uma bóia. Quando a bóia é deslocada, permite a passagem de ar comprimido através de um pequeno orifício. O ar que flui pressuriza uma câmara onde existe uma membrana; a pressão exercida na superfície da mem- brana cria uma força que provoca o deslocamento de um elemento obturador, que bloqueava o furo de comunicação com o ambiente. Sendo liberada esta comunicação, a água condensada no interior do copo é expulsa pela pressão do ar comprimido. Com a saída da água, a bóia volta para sua posição inicial, vedando o orifício que havia liberado, impedindo a continuidade de pressurização da câmara onde está a membrana. O ar que forçou o deslocamento da membrana por meio de um elemento poroso flui para a atmosfera, permitindo que uma mola recoloque o obturador na sede, impedindo a fuga do ar, reiniciando o acúmulo de condensado. Ideal para utilização em locais de difícil acesso, onde o condensado reúne-se com facilidade, etc. Simbologia Advertência - Copos de Policarbonato Copos de policarbonato transparente são de altíssima resistência mecânica e ideais para aplicação em fil- tros e lubrificadores. São apropriados para uso em ambientes industriais, mas não devem ser instalados em locais onde possam estar em contato direto com raios solares, sujeitos a impactos e temperaturas fora dos limites especificados. Alguns produtos químicos podem causar danos aos copos de policarbonato, os quais não devem entrar em contato com hidrocarbo- netos aromáticos e halogenados, álcoois, compostos orgânicos clorados, produtos de caráter básico orgâni- cos e inorgânicos, aminas e cetonas (vide tabela de elementos não compatíveis). O filtro e o lubrificador não devem ser instalados em locais onde o copo pos- sa estar exposto à ação direta de óleos de corte in- dustrial, pois alguns aditivos usados nesses óleos podem agredir o policarbonato. Os copos metálicos são recomendados onde o ambiente e/ou as condi- ções de trabalho não são compatíveis com os copos de policarbonato. Os copos metálicos são resistentes à ação de grande parte dos solventes, mas não po- dem ser utilizados onde há presença de ácidos ou bases fortes ou em atmosferas salinas carregadas. Os protetores metálicos para copos de policarbonato são recomendados para melhorar a segurança, se ocasi- onalmente ocorrer uma agressão química. O filtro deve ser instalado verticalmente com o copo na posição inferior. Deve-se drenar constantemente o condensado para que o mesmo não atinja a base do elemento filtrante/coalescente. Importante Ao notar qualquer alteração no copo de policarbonato, tais como microtrincas ou trincas, substitua-o imedia- tamente e verifique se há algum agente não compatí- vel em contato com o mesmo. Lembramos que a maioria dos solventes e alguns tipos de óleo ata- cam o policarbonato. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 29 Training Obs.: Esta relação é parcial, sendo apenas orientativa. Filtros Coalescentes Clorofórmio Cresol Diamina Éter Etílico Freon Fenol Gasolina Hidróxido de Amônia Hidróxido de Sódio Metiletilcetona Óleo para Freio Hidráulico Acético Azônio Percloroetileno Tetracloreto de Carbono Thinner Tolueno Terpentina Xileno Limpeza Para limpar os copos de policarbonato usar somente água e sabão neutro. Não use agentes de limpeza, tais como: acetona, benzeno, gasolina, tolueno, etc, pois os mes- mos agridem quimicamente o plástico (ver tabela abaixo). Elementos não compatíveis com o Policarbonato Acetona Ácido Acético Ácido Fórmico Ácido Hidroclórico Ácido Nítrico Ácido Sulfúrico Ácido Etílico Ácido Isopropílico Ácido Metílico Aldeído Amônia Anidrido Anilina Benzeno Carbonato de Amônia Ciclo Hexanol Clorobenzeno Cloroetileno Ar Comprimido Ar comprimido limpo é essencial em indústrias de processamento de alimentos, eletrônica, equipamen- tos hospitalares e odontológicos, indústria fotográfica, fábricas de plásticos e na instrumentação. Ar limpo nessas e em outras aplicações significa mais do que apenas ar isento de contaminação por partícu- las sólidas. O ar utilizado nessas indústrias deve também estar isento de aerossóis de água e de óleo contaminantes, que fogem do raio de ação dos siste- mas de filtragem convencionais. Água, Óleo e Partículas Sólidas são Fontes de Contaminação Os contaminantes que causam maiores problemas em circuitos de ar comprimido são: água, óleo e partículas sólidas. O vapor de água está presente em todo ar comprimido e se torna mais concentrado devido ao processo de compressão. Um compressor de 25 HP que produz 170 Nm3/h (100 SCFM) a uma pressão de 7 bar (102 psig) pode produzir 68 litros (18 galões) de água por dia. Partículas de água em supensão no ar comprimido variam de 0,05 a 10 µm. Embora sistemas de secagem de ar possam ser usados eficientemente para a remoção de água do ar comprimido, tais sistemas não removem o contami- nante líquido do ar: o óleo. O óleo, que está presente em circuitos de ar comprimido, é introduzido em grande escala no fluxo de ar através do compressor. A quantidade de óleo introduzida desta forma varia com o tipo de compres- sor utilizado. As estimativas de teor de hidrocarbonetos encontrados na saída de ar de compressores típicos são em partes por milhão (ppm): Compressor de Parafuso 25 a 75 ppm a 93°C (200°F) Compressor de Pistão 5 a 50 ppm a 177°C (350°F) Compressor Centrífugo 5 a 15 ppm a 145°C (300°F) A uma concentração de 25 ppm, um compressor fornecendo 170 Nm3/h (100 SCFM) durante 35 horas introduzirá 224 gramas de óleo no circuito pneumático. Mesmo utilizando-se um compressor de funciona- mento a seco (sem óleo), a contaminação por óleo encontrada no fluxo de ar continua sendo um problema porque o ar ambiente pode conter de 20-30 ppm de hidrocarbonetos em suspensão originários de fontes industriais e da queima de combustíveis. Compressores a seco podem expelir aproximada- mente 100 ppm de hidrocarbonetos durante o ciclo de compressão. Tecnologia Pneumática Industrial 30 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Difusão: 0,001 a 0,2 µm Esta quantidade é suficiente para contaminar os componentes da linha de ar e impregnar equipamentos de secagem. A maioria das partículas de óleo em suspensão geradas por todos os tipos de compressores é igual ou inferior a 2 µm. O terceiro maior contaminante encontrado no ar comprimido são as partículas sólidas, incluindo ferrugem e fragmentos da tubulação. Partículas sólidas combinadas com partículas de água e óleo em suspensão podem obstruir e reduzir a vida de componentes de circuitos pneumáticos, bem como sistemas de filtração. A maioria das partículas de ferrugem e fragmentos encontrados em circuitos de ar comprimido apresenta tamanhos variando de 0,5 a 5 µm. Os Filtros Coalescentes Atendem às Necessidades de Ar Comprimido Limpo Filtros convencionais de filtragem nominal de 5 micra não conseguem remover partículas contaminantes submicrônicas para atender a aplicações especiais. O limite mínimo de remoção desses filtros de uso convencional é geralmente maior do que 2µm. Oitenta por cento de contaminantes em suspensão são inferiores a 2 µm em tamanho. Contudo, os filtros coalescentes são especialmente projetados para remover partículas submicrônicas sólidas, de óleo e água do ar comprimido. Os filtros coalescentes de porosidade padrão GRAU 6 são capazes de remover acima de 99,9% de todas as partículas em suspensão na faixa de 0,3 a 0,6 µm. Além disso, esses filtros apresentam uma eficiência de 99,98% na remoção de partículas suspensas e na eliminação de partículas sólidas maiores que 0,3 µm. Desta forma, um nível de contaminação de 20 ppm de óleo é reduzido para uma concentração de 0,004 ppm. (Nível aceitável para praticamente todas as aplicações pneumáticas). Desempenho dos Filtros Coalescentes A separação de contaminantes sólidos e aerossóis em suspensão no ar é efetuada principalmente pela ação da gravidade. As partículas contaminantes de tamanho maior que 10 µm tendem a sair mais rapidamente quando o ar está em movimento. A maioria dos filtros coalescentes foi projetada para provocar a união de aerossóis extremamente pequenos em suspensão em gotículas maiores. Assim, essas gotículas estarão suscetíveis à ação da gravidade. Este processo de união é denominado "Coalescência". O processo de coalescência pode ser comparado às condições atmosféricas em atividade durante a formação de chuva - pequenas moléculas de vapor de água presentes no ar turbulento e carregado de umidade se condensam, formando aerossóis em suspensão que, por colisão, começam a formar gotículas de massas maiores, até que tenham adquirido peso suficiente para reagir à ação da gravidade e cair para a Terra em forma de chuva. Os filtros coalescentes eliminam a contaminação submicrônica através de três processos de ação simultânea, dependendo do tamanho do aerossol em suspensão: Difusão: Partículas e Aerossóis de 0,001 a 0,2 µm Partículas sólidas e aerossóis em suspensão, na faixa de tamanho de 0,001 a 0,2 µm, estão sujeitos ao movimento browniano rápido e aleatório, movimentam- se totalmente independentes da massa de ar, da mesma forma que moléculas gasosas movimentam- se em um fluxo de ar. Este movimento provoca a migração dessas partículas para fora do fluxo de ar e estas colidem com superfícies filtrantes expostas. Os contaminantes sólidos aderem permanentemente a essas superfícies devido às forças intermoleculares (Leis de Van der Waals). As gotículas líquidas, no entanto, migram pela ação da gravidade através das fibras até unirem-se com outras gotículas e formarem massas líquidas maiores que podem ser drenadas do sistema. A taxa de atividade da difusão aumenta com a elevação da temperatura e pressão. Interceptação: Partículas e Aerossóis de 0,2 a 2 µm Para contaminantes de tamanhos entre 0,2 e 2 µm, a interceptação é o mecanismo coalescente predomi- nante. Esses contaminantes se harmonizam com o curso do fluxo de ar e se tornam mais difíceis de serem removidos, pois são capazes de contornar as fibras e escapar do filtro. De modo geral, a eficiência do mecanismo aumenta à medida que o tamanho dos poros (ou a densidade da fibra) diminui. As fibras com um diâmetro médio de 0,5 µm são utilizadas para otimizar o desempenho dos filtros nessa Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 33 Training Regulagem de Pressão Normalmente, um sistema de produção de ar compri- mido atende à demanda de ar para vários equipamen- tos pneumáticos. Em todos estes equipamentos está atuando a mesma pressão. Isso nem sempre é possível, pois, se estivermos atuando um elemento pneumático com pressão maior do que realmente necessita, estaremos consumindo mais energia que a necessária. Por outro lado, um grande número de equipamentos operando simultaneamente num determinado intervalo de tempo faz com que a pressão caia, devido ao pico de consumo ocorrido. Estes inconvenientes são evitados usando-se a Válvula Reguladora de Pressão, ou simplesmente o Regulador de Pressão, que tem por função: - Compensar automaticamente o volume de ar reque- rido pelos equipamentos pneumáticos. - Manter constante a pressão de trabalho (pressão se- cundária), independente das flutuações da pressão na entrada (pressão primária) quando acima do valor regulado. A pressão primária deve ser sempre supe- rior à pressão secundária, independente dos picos. - Funcionar como válvula de segurança. Funcionamento do Regulador de Pressão Descrição Os reguladores foram projetados para proporcionar uma resposta rápida e uma regulagem de pressão acurada para o maior número de aplicações industriais. O uso do diafragma especialmente projetado resulta em um aumento significativo da vida útil do regulador, proporcionando baixos custos de manutenção. Suas principais características são: - Resposta rápida e regulagem precisa, devido a uma aspiração secundária e a válvula de assento incor- porado. - Grande capacidade de reversão de fluxo. - Diafragma projetado para proporcionar um aumento da vida útil do produto. - Dois orifícios destinados a manômetro que podem ser usados como orifícios de saída. - Fácil manutenção. Operação O ar comprimido entra por (P) e pode sair por (P') apenas se a válvula de assento estiver aberta. A secção de passagem regulável está situada abaixo da válvula de assento (C). Girando totalmente a manopla (D) no sentido anti-horário (mola sem compressão), o conjunto da válvula de assento (C) estará fechado. Girando a manopla no sentido horário, aplica-se uma carga numa mola calibrada de regulagem (A) fazendo com que o diafragma (B) e a válvula de assento (C) se desloquem para baixo, permitindo a passagem do fluxo de ar comprimido para a utilização (H). A pressão sobre o diafragma (B) está balanceada através o orifício de equilíbrio (G) quando o regulador está em operação. A pressão secundária, ao exceder a pressão regulada, causará, por meio do orifício (G), ao diafragma (B), um movimento ascendente contra a mola de regulagem (A), abrindo o orifício de sangria (F) contido no diafragma. O excesso de ar é jogado para atmosfera através de um orifício (E) na tampa do regulador (somente para reguladores com sangria). Portanto, uma saída de pressão pré-regulada é um processo de abre-fecha da válvula de assento (C), que poderia causar certa vibração. Isso é evitado porque certos reguladores são equipados por um amortecimento (I) à mola ou a ar comprimido. O dispositivo autocompensador (C-J) permite montar o regulador em qualquer posição, e confere ao equipamento um pequeno tempo de resposta. A pressão de saída é alterada pela atuação sobre a manopla de regulagem, não importa se é para decrés- cimo - quando a pressão secundária regulada é maior, o ar excedente desta regulagem é automaticamente expulso para o exterior atráves do orifício (F) até a pressão desejada ser atingida - ou acréscimo - o au- mento processa-se normalmente atuando-se a mano- pla e comprimindo-se a mola (A) da forma já menciona- da; atráves de um manômetro (J) registram-se as pressões secundárias reguladas. Secção de um Regulador de Pressão com Escape H J I C B A ➔ ➔ Simbologia G F E D A - Mola B - Diafragma C - Válvula de Assento D - Manopla E - Orifício de Exaustão F - Orifício de Sangria G - Orifício de Equilíbrio H - Passagem do Fluxo de Ar I - Amortecimento J - Comunicação com Manômetro Tecnologia Pneumática Industrial 34 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Bitolas 1/4", 3/8", 1/2" e 3/4" Rosca NPT ou G Temperatura 0 a +80°C de Trabalho Pressão Máxima 17,0 bar Primária Pressão Secundária 0,07 a 4,0 bar (Baixa pressão) 0,14 a 8,5 bar (Pressão normal) 0,35 a 17,0 bar (Alta pressão) Vazão (7 bar na entrada) Ver Tabela Peso 0,8 kg (Série 06) 1,0 kg (Série 07) Materiais Corpo Zamac Haste de Ajuste Aço Anel de Fixação Plástico Diafragma Borracha Nitrílica (Buna-N) Características Técnicas Manopla de Regulagem Plástico Mola de Regulagem Aço Mola de Assento Aço Vazão (Pressão Primária 7 bar e saída livre para atmosfera) SCFM l/min Cv Bitolas 06 07 06 07 06 07 1/4" 85 ND 2.407 ND 1,52 ND 3/8" 120 175 3.398 4.955 2,14 3,12 1/2" 130 195 3.681 5.522 2,32 3,48 3/4" ND 200 ND 5.633 ND 3,57 Regulador de Pressão sem Escape O regulador sem escape é semelhante ao visto anteriormente, mas apresenta algumas diferenças: Não permite escape de ar devido a um aumento de pressão; o diafragma não é dotado do orifício de san- gria (F), ele é maciço. Quando desejamos regular a pressão a um nível infe- rior em relação ao estabelecido, a pressão secundária deve apresentar um consumo para que a regulagem seja efetuada. Filtro/Regulador Conjugado Há também válvulas reguladoras de pressão integra- das com filtros, ideais para locais compactos. Descrição Economiza espaço, pois oferece filtro e regulador conjugados para um desempenho otimizado. Grande eficiência na remoção de umidade. Operação Girando a manopla (A) no sentido horário aplica-se uma carga na mola de regulagem (F), fazendo com que o diafragma (H) e o conjunto da válvula de assento (C) se desloquem para baixo, permitindo a passagem do fluxo de ar filtrado pelo orifício (I). A pressão sobre o diafragma (H) está balanceada quando o filtro/ regulador conjugado está em operação, se a pressão secundária exceder a pressão regulada causará ao diafragma (H) um movimento ascendente contra a mola de regulagem (F), abrindo o orifício de sangria (B) contido no diafragma. O excesso de ar é jogado para atmosfera através do orifício (G) na tampa do filtro/regulador conjugado (filtro/regulador conjugado com sangria). O primeiro estágio da filtração começa quando o ar comprimido flui através do defletor supe- rior (D), o qual causa uma ação de turbilhonamento. As impurezas contidas no ar comprimido são jogadas contra a parede do copo devido à ação centrífuga causada pelo defletor superior (D). O defletor inferior (E) separa a umidade e as partículas sólidas depositadas no fundo do copo, evitando a reentrada das mesmas no sistema de ar comprimido. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 35 Training O segundo estágio de filtração ocorre quando o ar passa pelo elemento filtrante (J) onde as partículas menores são retidas. O ar passa então através da área do assento (I) para conexão de saída do produto. Refil - Filtro Regulador Simbologia A - Manopla B - Orifício de Sangria C - Válvula de Assento D - Defletor Superior E - Defletor Inferior * 17 bar com uso da válvula de bloqueio com partida suave. Bitolas 1/4", 3/8", 1/2" e 3/4" Rosca NPT ou G Temperatura 0 a +52°C (Copo de Policarbonato) de Trabalho 0 a +80°C (Copo Metálico) Pressão de Trabalho 0 a 10 bar (Copo de Policarbonato) 0 a 17 bar (Copo Metálico) Pressão de Trabalho 2 a 12 bar * para Dreno Automático Materiais Corpo Zamac Copo Policarbonato Transparente Zamac (Copo Metálico) Haste de Ajuste Aço Protetor do Copo Aço Anel de Fixação Plástico ( Copo de Policarbonato do Copo Série 06/07, e Copo Metálico (Série 06) Alumínio (Copo Metálico Série 07) Características Técnicas Pressão Secundária 0,07 a 4,0 bar (Baixa pressão) 0,14 a 8,5 bar (Pressão normal) 0,35 a 17,0 bar (Alta pressão) Vazão (Pressão Primária 7 bar e saída livre para atmosfera) SCFM l/min Cv Bitolas 06 07 06 07 06 07 1/4" 90 ND 2.548 ND 1,61 ND 3/8" 115 160 3.256 4.531 2,05 2,86 1/2" 120 165 3.398 4.672 2,14 2,95 3/4" ND 175 ND 4.955 ND 3,12 Pressão de Trabalho 0 a 17 bar para Dreno Manual Vazão Ver Tabela Capacidade do Copo 0,12 l (Série 06) 0,19 l (Série 07) Granulação do 5 ou 40 micra Elemento Filtrante Peso 0,7 kg (Série 06) 1,2 kg (Série 07) Diafragma Borracha Nitrílica (Buna-N) Manopla de Regulagem Plástico Mola de Regulagem Aço Mola de Assento Aço J D C B A ➔ ➔ I H G F E F - Mola G - Orifício de Exaustão H - Diafragma I - Passagem do Fluxo de Ar J - Elemento Filtrante Tecnologia Pneumática Industrial 38 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Materiais Corpo Zamac Copo Policarbonato Transparente Zamac (Copo Metálico) Protetor do Copo Aço Anel de Fixação Plástico (Policarbonato Série 06/07 do Copo e Metálico Série 06) Alumínio (Copo Metálico Série 07) Vedações Buna-N Visor do Copo Metálico Poliamida Bitolas 1/4", 3/8", 1/2" e 3/4" NPT ou G Vazão (l/min) Ver Tabela Vazão Mínima para 14 l/min a 7 bar Lubrificação Faixa de Temperatura 0 a +52°C (Copo de Policarbonato) 0 a +80°C (Copo Metálico) Faixa de Pressão 0 a 10 bar (Copo de Policarbonato) 0 a 17 bar (Copo Metálico) Características Técnicas Pressão Secundária 0,07 a 4,0 bar (Baixa pressão) 0,14 a 8,5 bar (Pressão normal) 0,35 a 17,0 bar (Alta pressão) Capacidade do Copo 0,08 l (Série 06) 0,16 l (Série 07) Peso 0,6 kg (Série 06) 1,2 kg (Série 07) pneumáticos serem de borracha nitrílica (Buna N). O óleo não deve alterar o estado do material. Com isso, queremos nos referir ao ponto de Anilina do óleo, que pode provocar dilatação, contração e amole- cimento das guarnições. O ponto de Anilina é definido como a temperatura na qual tem início a mistura de óleo de anilina com o óleo considerado. Nas lubrificações pneumáticas o Ponto de Anilina não deve ser inferior a 90°C (194°F) e nem superior a 100°C (212°F). Um sistema lubrificado adequadamente não apresen- tará tais inconvenientes em relação às guarnições. Óleos Recomendados Shell ...................................... Shell Tellus C-10 Esso ...................................... Turbine Oil-32 Esso ...................................... Spinesso-22 Mobil Oil ................................ Mobil Oil DTE-24 Valvoline ................................ Valvoline R-60 Castrol ................................... Castrol Hyspin AWS-32 Lubrax ................................... HR 68 EP Lubrax ................................... Ind CL 45 Of Texaco ................................... Kock Tex-100 Vazão (Pressão Primária 7 bar e saída livre para atmosfera) SCFM l/min Cv Bitolas 06 07 06 07 06 07 1/4" 100 ND 2.832 ND 1,78 ND 3/8" 220 230 6.230 6.513 3,93 4,11 1/2" 305 310 8.636 8.778 5,45 5,53 3/4" ND 320 ND 9.061 ND 5,71 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 39 Training 5. Válvulas de Controle Direcional O Que Vem a ser Número de Posições? É a quantidade de manobras distintas que uma válvulas direcional pode executar ou permanecer sob a ação de seu acionamento. Nestas condições, a torneira, que é uma válvula, tem duas posições: ora permite passagem de água, ora não permite. - Norma para representação: CETOP - Comitê Europeu de Transmissão Óleo - Hidráulica e Pneumática. - ISO - Organização Internacional de Normalização. As válvulas direcionais são sempre representadas por um retângulo. - Este retângulo é dividido em quadrados. - O número de quadrados representados na simbolo- gia é igual ao número de posições da válvula, repre- sentando a quantidade de movimentos que executa através de acionamentos. 2 Posições 3 Posições Os cilindros pneumáticos, componentes para máqui- nas de produção, para desenvolverem suas ações produtivas, devem ser alimentados ou descarregados convenientemente, no instante em que desejarmos, ou de conformidade com o sistema programado. Portanto, basicamente, de acordo com seu tipo, as válvulas servem para orientar os fluxos de ar, impor bloqueios, controlar suas intensidades de vazão ou pressão. Para facilidade de estudo, as válvulas pneumáticas foram classificadas nos seguintes grupos: • Válvulas de Controle Direcional • Válvulas de Bloqueio (Anti-Retorno) • Válvulas de Controle de Fluxo • Válvulas de Controle de Pressão Cada grupo se refere ao tipo de trabalho a que se destina mais adequadamente. Válvulas de Controle Direcional Têm por função orientar a direção que o fluxo de ar deve seguir, a fim de realizar um trabalho proposto. Para um conhecimento perfeito de uma válvula direcional, deve-se levar em conta os seguintes dados: • Posição Inicial • Número de Posições • Número de Vias • Tipo de Acionamento (Comando) • Tipo de Retorno • Vazão Além destes, ainda merece ser considerado o tipo Construtivo. Tecnologia Pneumática Industrial 40 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Direção de Fluxo Nos quadros representativos das posições, encontram- se símbolos distintos: As setas indicam a interligação interna das conexões, mas não necessariamente o sentido de fluxo. Passagem Bloqueada Escape não provido para conexão (não canalizado ou livre) Identificação dos Orifícios da Válvula As identificações dos orifícios de uma válvulla pneumática, reguladores, filtros etc., têm apresentado uma grande diversificação de indústria para indústria, sendo que cada produtor adota seu próprio método, não havendo a preocupação de util izar uma padronização universal. Em 1976, o CETOP - Comitê Europeu de Transmissão Óleo-Hidráulica e Pneumática, propôs um método universal para a identificação dos orifícios aos fabricantes deste tipo de equipamento. O código, apresentado pelo CETOP, vem sendo estudado para que se torne uma norma universal através da Organização Internacional de Normalização - ISO. A finalidade do código é fazer com que o usuário tenha uma fácil instalação dos componentes, relacionando as marcas dos orifícios no circuito com as marcas contidas nas válvulas, identificando claramente a função de cada orifício. Essa proposta é numérica, conforme mostra. Escape provido para conexão (canalizado) 2 vias 3 vias 5 31 4 2 14 12 = Passagem = 02 vias = Bloqueio = 01 via Número de Vias É o número de conexões de trabalho que a válvula possui. São consideradas como vias a conexão de entrada de pressão, conexões de utilização e as de escape. Para fácil compreensão do número de vias de uma válvula de controle direcional podemos também considerar que: Uma regra prática para a determinação do número de vias consiste em separar um dos quadrados (posição) e verificar quantas vezes o(s) símbolo(s) interno(s) toca(m) os lados do quadro, obtendo-se, assim, o número de orifícios e em correspondência o número de vias. Preferencialmente, os pontos de conexão deverão ser contados no quadro da posição inicial. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 43 Training Acionamento por Pino Quando um mecanismo móvel é dotado de movimento retilíneo, sem possibilidades de ultrapassar um limite e ao fim do movimento deve acionar uma válvula, o recomendado é o acionamento por pino, que recebe um ataque frontal. Ao posicionar a válvula, deve-se ter o cuidado de deixar uma folga, após o curso de acionamento, com relação ao curso final do mecanis- mo, para evitar inutilização da válvula devido a inúteis e violentas solicitações mecânicas. Enquanto durar a ação sobre o pino, a válvula perma- nece comutada (acionada). Acionamento por Rolete Se a válvula necessita ser acionada por um mecanismo com movimento rotativo, retilíneo, com ou sem avanço ulterior, é aconselhável utilizar o acionamento por rolete, para evitar atritos inúteis e solicitações danosas em relação às partes da válvula. O rolete, quando posicionado no fim de curso, funciona como pino, mas recebe ataque lateral na maioria das vezes. Numa posição intermediária, receberá comando toda vez que o mecanismo em movimento passar por cima, independentemente do sentido do movimento. Gatilho (Rolete Escamoteável) Utilizado nas posições intermediárias ou fim de curso, onde podem ocorrer problemas de "contrapressão". O posicionamento no final de curso, com leve afasta- mento, evita que permaneça constantemente aciona- do, como o pino e o rolete. Difere dos outros por permitir o acionamento da válvula em um sentido do movimento, emitindo um sinal pneu- mático breve. Quando o mecanismo em movimento atua sobre o acionamento causa um travamento, provocando o deslocamento das partes internas da válvula. No sentido oposto ao de comando, o mecanismo causa a rotação do acionamento, eliminando qualquer pos- sibilidade de comandar a válvula. É importante ressaltar que a emissão do sinal pneumático, sendo breve, não deve percorrer longas distâncias. A comutação da válvula e a emissão do sinal estão em função de sua construção, principalmente da velocidade com que é acionada e do comprimento do mecanismo que irá acioná-la. Acionamentos Pneumáticos As válvulas equipadas com este tipo de acionamento são comutadas pela ação do ar comprimido, provenien- te de um sinal preparado pelo circuito e emitido por outra válvula. Nos acionamentos pneumáticos destacam-se: Posicionamento do Acionamento Tipo Pino Posicionamento do Acionamento Tipo Rolete Posicionamento do Acionamento Tipo Gatilho Comanda a Válvula Não Comanda a Válvula Tecnologia Pneumática Industrial 44 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Comando Direto por Alívio de Pressão (Piloto Negativo) - Os pistões são pressurizados com o ar comprimido proveniente da alimentação. Um equilíbrio de forças é estabelecido na válvula; ao se processar a despres- surização de um dos pistões, ocorre a inversão da válvula. Comando Direto por Aplicação de Pressão (Piloto Positivo) - Um impulso de pressão, proveniente de um comando externo, é aplicado diretamente sobre um pistão, acionando a válvula. Diafragma A grande vantagem está na pressão de comando; devido à grande área da membrana, pode trabalhar com baixas pressões. O princípio de atuação é bem semelhante ao de um piloto positivo. Aplicações frequentes: Substituição de sistemas eletrônicos e elétricos que são utilizados na automati- zação de fábricas de explosivos, produtos solventes, devido à sensibilidade que apresentam no controle de processos. Acionamentos Elétricos A operação das válvulas é efetuada por meio de sinais elétricos, provenientes de chaves fim de curso, pressostatos, temporizadores, etc. São de grande utilização onde a rapidez dos sinais de comando é o fator importante, quando os circuitos são complicados e as distâncias são longas entre o local emissor e o receptor. Acionamentos Combinados É comum a utilização da própria energia do ar compri- mido para acionar as válvulas. Podemos comunicar o ar de alimentação da válvula a um acionamento auxiliar que permite a ação do ar sobre o comando da válvula ou corta a comunicação, deixando-a livre para a operação de retorno. Os acionamentos tidos como combinados são classificados também como Servo Piloto, Comando Prévio e Indireto. Isso se fundamenta na aplicação de um acionamento (pré-comando) que comanda a válvula principal, responsável pela execu- ção da operação. Quando é efetuada a alimentação da válvula princi- pal, a que realizará o comando dos conversores de Piloto Negativo Simbologia Piloto Positivo Simbologia Comando Direto por Diferencial de Áreas A pressão de comando atua em áreas diferentes, possibilitando a existência de um sinal prioritário e outro supressivo. Diafragma Simbologia 10 12 12 10 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 45 Training Solenóide e Piloto ou Botão - A válvula principal pode ser comandada por meio da eletricidade, a qual cria um campo magnético, causando o afastamento do induzido do assento e liberando a pressão X que aciona a válvula. Pode ser acionada através do botão, o qual despres- suriza a válvula internamente. O acionamento por botão conjugado ao elétrico é de grande importância porque permite testar o circuito, sem necessidade de energizar o comando elétrico, permitindo continuidade de operação quando faltar energia elétrica. energia, pode-se emitir ou desviar um sinal através de um canal interno ou conexão externa, que ficará retido, direcionando-o para efetuar o acionamento da válvula principal, que posteriormente é colocada para exaustão. As válvulas de pré-comando são geralmente elétricas (Solenóides), pneumáticas (Piloto), manuais (Botão), mecânicas (Came ou Esfera). A seguir, são mostrados alguns tipos de acionamentos combinados. Solenóide e Piloto Interno - Quando o solenóide é energizado, o campo magnético criado desloca o indu- zido, liberando o piloto interno X, o qual realiza o acionamento da válvula. Acionamento Combinado - Elétrico e Pneumático Simbologia Solenóide e Piloto Externo - Idêntico ao anterior, porém a pressão piloto é suprida externamente. Acionamento Combinado - Elétrico e Pneumático Simbologia Acionamento Combinado - Muscular ou Elétrico e Pneumático Simbologia Tipo Construtivo As válvulas direcionais, segundo o tipo construtivo, são divididas em 3 grupos: - Válvula de distribuidor axial ou spool; - Válvula poppet; - Válvula poppet - spool. Válvula de Distribuidor Axial São dotadas de um êmbolo cilíndrico, metálico e polido, que se desloca axialmente no seu interior, guiado por espaçadores e guarnições sintéticas que, além de guiar, são responsáveis pela vedação. O deslocamento do êmbolo seleciona a passagem do fluxo de ar atavés dos sulcos que possui. Seu curso de comando é mais longo que o das válvulas tipo poppet, apresentando, contudo, diversas vantagens: inexistência de vazamentos internos durante as mudanças de posição, permite grande intercâmbio entre os tipos de acionamentos, requer pequeno esforço ao ser aciona- da, dotada de boa vazão e pode ser aplicada com diferentes tipos de fluidos. X D 12 X D D D Tecnologia Pneumática Industrial 48 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining 3/2 - Comando Direto por Solenóide Embora as válvulas de grande porte possam ser acionadas diretamente por solenóide, a tendência é fazer válvulas de pequeno porte, acionadas por solenóide e que servem de pré-comando (válvulas piloto), pois emitem ar comprimido para acionamento de válvulas maiores (válvulas principais). 3/2 - Tipo Assento Com Disco - Acionada por Piloto Emitindo-se o sinal de comando, este atua sobre um pistão, provocando seu deslocamento e compressão em uma mola. Com o contínuo deslocamento do pistão, o escape da válvula é vedado pela face oposta ao da atuação da pressão e a haste com o disco na extremidade é afastada do assento, propiciando passagem da pressão para a utilização. O fluxo permanece enquanto a pressão é mantida sobre o pistão (piloto). Cortando-se o suprimento de ar do piloto, pela ação da mola e pressão, o disco é recolocado na posição inicial, bem como o pistão que, ao ser afastado, libera o escape. Válvula de Controle Direcional 3/2 Acionada por Piloto, Retorno por Mola, N.F., Tipo Assento com Disco Simbologia 31 2 12 Exemplo de Aplicação de uma Válvula 3/2 vias Comando Básico Indireto Válvula de Controle Direcional 3/2 Acionada por Solenóide Direto, Retorno por Mola, N.F. Simbologia 31 2 A a0 12 2 1 3 a2 2 1 3 12 12 3 3 2 2 1 1 22 11 3 3 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 49 Training As válvulas possuem um enrolamento que circunda uma capa de material magnético, contendo em seu interior um induzido, confeccionado de um material es- pecial, para evitar magnetismo remanescente. Este conjunto (capa + induzido) é roscado a uma haste (corpo), constituindo a válvula. O induzido possui vedações de material sintético em ambas as extremidades, no caso da válvula de 3 vias, e em uma extremidade, quando de 2 vias. É mantido contra uma sede pela ação de uma mola. Sendo a válvula N.F., a pressão de alimentação fica retida pelo induzido no orifício de entrada e tende a deslocá-lo. Por este motivo, há uma relação entre o tamanho do orifício interno de passagem e a pressão de alimentação. A bobina é energizada pelo campo magnético criado e o induzido é deslocado para cima, ligando a pressão com o ponto de utilização, vedando o escape. Desenergi- zando-se a bobina, o induzido retoma à posição inicial e o ar emitido para a utilização tem condições de ser expulso para a atmosfera. Esta válvula é frequente- mente incorporada em outras, de modo que ela (válvula piloto) e a principal formem uma só unidade, como veremos em alguns casos adiante. Com as trocas das funções de seus orifícios, pode ser utilizada como N.A. 3/2 - Tipo Assento com Disco Acionada por Solenóide Indireto Com processo de comando prévio, utilizando a válvula comandada por solenóide, descrita como pré-coman- do. Sua constituição e funcionamento são baseados na válvula comandada por ar comprimido, acrescida de válvula de pré-comando. Ao se processar a alimentação da válvula, pela conexão mais baixa do corpo através de um orifício, a pressão de alimentação é desviada até a base do induzido da válvula de pré-comando, ficando retida. Energizando-se a bobina, o campo magnético atrai o induzido para cima, liberando a pressão retida na base. A pressão liberada age diretamente sobre o pistão, causando o comando da válvula. Cessado o fornecimento de energia elétrica, o campo magnético é eliminado, o induzido é recolocado na posição primitiva e a pressão de pilotagem é exaurida através do orifício de escape existente na válvula de pré-comando e o ar utilizado é expulso pelo orifício existente no corpo do acionamento. Válvula Tipo Assento com Disco Lateral Em lugar da esfera e cones é empregada uma haste (para comando manual), ou pistão e haste para comandos por ar comprimido e elétricos, onde são colocados discos que fazem a seleção do fluxo de ar. A haste, ou pistão e haste, juntamente com os discos, deslizam axialmente no interior de espaçadores e anéis “O”, em consequência do acionamento; o bloqueio das passagens é feito por encosto lateral. Responsáveis pela comunicação dos orifícios entre si, os discos permitem fluxo ou não, auxiliados pelos espaçadores e anéis “O” posicionados em relação às conexões e o percurso do conjunto. O critério de trabalho em ambas as versões é se- melhante, diferindo apenas: • Modelo haste - permite a conversão de N.F para N.A. e os meios de acionamento são musculares (pedal e alavanca). • Modelo pistão e haste - não permite adaptação e o retorno está fundamentado na própria alimentação do ar comprimido. A inversão na função dos orifícios não permite o funcionamento correto da válvula. Válvula de Controle Direcional 3/2 Acionada por Solenóide Indireto, Retorno por Mola, N.F., do Tipo Assento com Disco Simbologia 31 2 3 1 2 1 3 2 Tecnologia Pneumática Industrial 50 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining 3/2 - Tipo Pistão e Haste Acionamento por Simples Solenóide Seu funcionamento é idêntico ao da válvula acionada por simples piloto positivo. Em vez de emitir um sinal pneumático, é dotada de uma válvula comandada por solenóide e, ao ser criado o campo magnético, desloca o induzido, fazendo a pressão atuar sobre a face maior do êmbolo e permitindo a mudança de posição. Desenergizando-se a bobina, o induzido é recolocado em seu assento e o ar que havia comandado o pistão é eliminado para a atmosfera, permitindo que a válvula retorne à posição inicial por meio da presssão de ali- mentação, em contato direto com o pistão na face menor. Válvula de Controle Direcional 3/2 Acionada por Solenóide de Ação Indireta, Retorno por Suprimento Interno, N.F., Tipo Assento Lateral Simbologia 3 1 2 2 2 1 3 D 31 D Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 53 Training 3/2 - Duplo Piloto Positivo As válvulas de duplo piloto positivo são usadas em comandos remotos, circuitos semi ou completamente automáticos. Operadas normalmente por válvulas de 3 vias, com diversos tipos de acionamentos, um dos quais será escolhido em função da necessidade de operação. As válvulas acionadas por duplo piloto pos- suem dois pistões internos, acionados por impulsos alternadamente de acordo com o direcionamento exigido. Válvula 3/2 Acionada por Duplo Piloto Positivo Simbologia 31 2 Exemplo de Aplicação de uma Válvula 3/2 vias Duplo Piloto Positivo 2 12 12 3 1 2 3 1 10 10 12 10 12 10 A 2 a0 1 3 2 1 3 2 1 3 a2 a1 Tecnologia Pneumática Industrial 54 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining 3/2 Válvula de Partida Suave/Partida Rápida Esta válvula deverá ser montada antes do FRL e com um ajuste de partida rápida com acesso facilmente ajustado na válvula de ajuste de vazão. • Combinadas no mesmo corpo partida suave e partida rápida; • Ampla capacidade de vazão até 4,2 Cv; • Montada em linha ou de forma modular; • Operação por piloto pneumático ou solenóide; • Fácil ajuste de vazão na partida suave. 12 21 3 Simbologia 3 1 2 12 Funcionamento Quando a válvula está instalada no sistema pneumático e sem o sinal de piloto o pórtico 12 está em exaustão através da via 3. Quando um sinal de pilotagem atuar no pórtico 12 a válvula muda de estado, fechando a conexão entre as vias 2 e 3. Em um mesmo instante o fluxo de ar se inicia entre as vias 1 e 2 a uma baixa vazão controlada através da válvula de estrangula- mento, localizada na frente da válvula. Quando a baixa pressão está aproximadamente 4Kgt/cm (60 PSI) o carretel principal abre, permitindo a passagem de toda a vazão de ar para o sistema. Se houver a qualquer instante uma queda do sistema a válvula retorna à sua posição inicial, exaurindo a baixa pressão através da via 3. O sinal de pilotagem pode ser realizado através de piloto pneumático direto no pórtico 12, no topo da válvula, ou através de um solenóide montado na tampa superior. Obs.: Não use óleo sintético, recuperado, contendo álcool ou aditivo detergente. Não restrinja a entrada da válvula pois existe um suprimento interno para o piloto. A tubulação de alimento de pressão deve ser de mesma medida do que o pórtico de entrada ou maior para garantir que a válvula piloto receba pressão suficiente de alimenta- ção durante as condições de alta vazão. Válvula Direcional de Cinco Vias e Duas Posições (5/2) São válvulas que possuem uma entrada de pressão, dois pontos de utilização e dois escapes. Estas válvulas também são chamadas de 4 vias com 5 orifícios, devido à norma empregada. É errado denominá-las simplesmente de válvulas de 4 vias. Uma válvula de 5 vias realiza todas as funções de uma de 4 vias. Fornece ainda maiores condições de aplicação e adaptação, se comparada diretamente a uma válvula de 4 vias, principalmente quando a construção é do tipo distribuidor axial. Conclui-se, portanto, que todas as aplicações encontradas para uma válvula de 4 vias podem ser substituídas por uma de 5 vias, sem qualquer problema. Mas o inverso nem sempre é possível. Existem aplicações que uma válvula de 5 vias sozinha pode encontrar e que, quando feitas por uma de 4 vias, necessitam do auxílio de outras válvulas, o que encarece o circuito. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 55 Training 5/2 - Tipo Assento com Disco Lateral Acionada por Duplo Solenóide Indireto Alimentando-se a válvula, a pressão atua na área menor do pistão, flui para o ponto de utilização e ali- menta uma válvula de pré-comando, ficando retida. Para se efetuar mudança de posição, emite-se um si- nal elétrico, que é recebido pela válvula de pré-coman- do; ocorre o deslocamento do induzido e a pressão piloto é liberada, o fluxo percorre o interior da válvula principal e chega até o acionamento de retorno; encontrando-o fechado, segue para a área maior do pistão, causando a alteração de posição e simultanea- mente atinge uma restrição micrométrica, que possui duas funções. Nesta situação, sua função é evitar o máximo possível a fuga de ar que eventualmente possa ocorrer pelo escape da válvula. Alterada a posição, a conexão que recebia ar comprimido é colocada em contato com a atmosfera e o segundo ponto de utilização passa a receber fluxo, enquanto o seu escape é bloqueado. O segundo ponto, ao receber ar comprimido através de uma pequena canalização, desvia uma mínima parcela do fluxo, por meio de restrição, confirmando o sinal de comando. Para retorno, emite-se um sinal ao acionamento de retorno, que ao ser comutado desloca o êmbolo que vedava o ar de manobra, permitindo descarga para a atmosfera. Quando o retorno é efetuado, a restrição micromé- trica cumpre a sua segunda função; o comando de reversão é solicitado e causa a abertura de uma passagem para a atmosfera, com o fim de eliminar o primeiro sinal. Mas, pela restrição, há um fluxo que procura manter o sinal de comutação. A mudança de posição é conseguida porque a restri- ção permite um mínimo fluxo, enquanto o acio- namento de retorno exaure um fluxo maior, possibili- tando uma queda de pressão e consequentemente de força. Isto faz com que a pressão de alimentação, atuando na área menor, retorne a válvula para a posição inicial. Válvula 3/2 Acionada por Duplo Piloto Positivo Simbologia 35 4 2 1 53 53 1 2 4D 2 4D 1 Tecnologia Pneumática Industrial 58 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining 5/2 - Tipo Spool Acionada por Duplo Piloto São válvulas utilizadas geralmente para operar cilindros de dupla ação. Permitem fluxo total porque sua área de passagem interna é equivalente à área de passagem da conexão nominal. Sua construção interna não permite fugas de ar durante o movimento do spool, pois este é flutuante sobre guarnições tipo “O” Ring distanciadas por espaçadores estacionários. Quando a válvula é alimentada, através do orifício de pilotagem, o ar comprimido é dirigido à extremidade do êmbolo, desta forma ocorrerá deslocamento do êmbolo devido à pressão piloto. Com este movimento, o orifício de pressão “1” alimentará “4”, e “2” terá es- cape por “3”. Com a pilotagem no lado oposto, o processo de mu- dança de posição é idêntico. Válvula de Controle Direcional 5/2, Acionamento por Duplo Piloto Positivo, Tipo Distribuidor Axial Simbologia 35 4 2 1 Exemplo de Aplicação de uma Válvula 5/2 vias Duplo Piloto Positivo 5 1 3 5 1 3 4 24 2 14 12 14 12 14 12 A 14 12 a0 5 24 3 1 a2 2 31 a1 2 31 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 59 Training Válvula Direcional de Três Vias e Três Posições (3/3) Com as mesmas conexões de uma 3/2, é acrescida de uma posição chamada Centro, Posição Neutra ou Intermediária, fornecendo outras características à válvula. Existindo 3 posições, o tipo de acionamento terá que possuir três movimentos, para que se possa utilizar de todos os recursos da válvula. O centro de uma V.D. 3/3 normalmente é C.F. (centro fechado). Nesta posição, todas as conexões, sem exceção, estão bloqueadas. Este tipo de centro permite impor paradas intermediárias em cilindros de S.E., mas sem condições precisas. A comunicação entre orifícios é conseguida através do distribuidor axial, que se desloca no interior da válvula, comunicando os orifícios de acordo com seu deslocamento, efetuado pelo acionamento. Pode ser comandada por acionamento muscular, elétrico ou pneumático e dificilmente por mecânico. A Posição Neutra é conseguida por: • Centragem por molas ou ar comprimido - elimina- do o efeito sobre o acionamento, o carretel é centrado através da pressão do ar comprimido ou por força da mola, sendo mantido até que o caminho se processe. • Travamento - utilizado geralmente com acionamento muscular. Acionada a válvula, através de um dispositivo de esferas ou atrito, o carretel é retido na posição de ma- nobra. Para colocá-lo em outra posição ou no centro, é necessária a influência humana, que vence a retenção imposta, deslocando o distribuidor para a posição desejada. O mesmo critério é empregado quando são válvulas 4/3 ou 5/3. Válvula de Controle Direcional 3/3, Acionamento por Alavanca Centrada por Mola C.F.; Tipo Distribuidor Axial Válvula de Controle Direcional 3/3, Acionada Simbologia 31 2 Simbologia 31 2 1 2 3 1 2 3 1 2 3 Tecnologia Pneumática Industrial 60 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Válvula Direcional de Cinco Vias e Três Posições (5/3) Uma válvula 5/3 C.F. (Centro Fechado). É utilizada para impor paradas intermediárias. A válvula 5/3 C.A.N. (Centro Aberto Negativo), onde todos os pontos de utilização estão em comunicação com a atmosfera, exceto a pressão, que é bloqueada; utilizada quando se deseja paralisar um cilindro sem resistência e selecionar direções de fluxo para circuitos. Na válvula de 5/3 C.A.P. (Centro Aberto Positivo), os pontos de utilização estão em comunicação com a alimentação, exceto os pontos de exaustão. Utilizada quando se deseja pressão nas duas conexões de alimentação do cilindro. A comunicação entre as conexões é conseguida através de canais internos. Facilita a manutenção, devido à sua forma construtiva e contém uma mínima quantidade de peças facilmente substituíveis na própria instalação. Pode ser instalada em painéis com saídas laterais ou pela base e possibilita sua utilização como 3/3, efetuando-se um pequeno bloqueio com tampão em um dos pontos de utilização. Válvula de Controle Direcional 5/3, Acionada por Duplo Piloto, Centrada por Mola, C.F., Tipo Distribuidor Axial Simbologia 35 24 1 5 1 3 5 1 3 5 1 3 4 2 4 2 4 2 14 12 14 12 14 12 14 12 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 63 Training Válvulas com Acionamento Pneumático (Piloto) Válvulas com Acionamento Elétrico (Solenóide) Rosca 1/8" 1/4" Frequência Máxima de Funcionamento Piloto/Mola 14 ms 25 ms Piloto/Piloto Diferencial 14 ms 31 ms Piloto/Piloto 8 ms 11 ms Piloto/Mola 3 bar 3 bar Piloto/Piloto Diferencial 4 bar 4 bar Piloto/Piloto 1,5 bar 1,5 bar Piloto/Mola 5 Hz 5 Hz Piloto/Piloto Diferencial 5 Hz 5 Hz Piloto/Piloto 10 Hz 10 Hz Atuador Manual Piloto/Mola Giratório Giratório do Corpo Piloto/Piloto Diferencial Giratório Giratório Piloto/Piloto Impulso Impulso Piloto/Mola 0,102 kg 0,202 kg Peso Piloto/Piloto Diferencial 0,102 kg 0,202 kg Piloto/Piloto 0,094 kg 0,189 kg Tempo de Resposta a 6 bar Pressão Mínima de Pilotagem a 6 bar na Entrada Rosca 1/8" 1/4" Solenóide/Mola 22 ms 39 ms Tempo de Resposta Solenóide/Piloto Diferencial 23 ms 42 ms Solenóide/Solenóide 12 ms 17 ms Potência do Solenóide 1,2 W (1,2 VA) 1,2 W (1,2 VA) Solenóide/Mola 5 Hz 5 Hz Solenóide/Piloto Diferencial 5 Hz 5 Hz Solenóide/Solenóide 10 Hz 10 Hz Grau de Proteção IP65 IP65 Atuador Manual Solenóide/Mola Giratório Giratório do Corpo Solenóide/Piloto Diferencial Giratório Giratório Solenóide/Solenóide Impulso Impulso Atuador Manual Solenóide/Mola Giratório - Com Trava Giratório - Com Trava do Conjunto Solenóide Solenóide/Piloto Diferencial Giratório - Com Trava Giratório - Com Trava Solenóide/Solenóide Giratório - Com Trava Giratório - Com Trava Solenóide/Mola 0,150 kg 0,250 kg Solenóide/Piloto Diferencial 0,150 kg 0,250 kg Peso Solenóide/Solenóide 0,190 kg 0,285 kg Atuador Solenóide 0,040 kg 0,040 kg Conector Elétrico 0,010 kg 0,010 kg Frequência Máxima de Funcionamento Tecnologia Pneumática Industrial 64 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Manifold com Fixação Direta Esta montagem não utiliza perfil, é bastante compacta e indicada para montagens com poucas válvulas (máximo 5 válvulas). ∆ Manifold Montado sobre Trilho DIN Placa Lateral com Simples Alimentação Esta placa é utilizada para montagens com um máximo de 8 válvulas ∆ Placa Lateral com Dupla Alimentação Montagem - Prender uma das placas laterais de alimentação no trilho, através dos parafusos indicados na figura abaixo. Procedimento de Montagem Sobre Trilho DIN - Após os tirantes estarem todos montados, encaixe a outra placa lateral sem apertar os parafusos. 1 Módulo A B O-rings - Colocar os tirantes em ambos os lados. - Montar as válvulas nos tirantes conforme indicado abaixo. - Apertar os parafusos da placa de alimentação para fixar as válvulas e o bloco no trilho. Esta placa é utilizada para montagens com um máximo de 16 válvulas. O manifold é preso diretamente através de dois furos de fixação contidos na placa lateral. As outras operações de montagem são idênticas para válvulas montadas sobre trilho DIN. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 65 Training Bloco Manifold Descrição As Válvulas Série B são indicadas para acionar cilindros de simples e dupla ação, assim como qualquer outro sistema pneumático. Esta série de válvulas se apresenta nas versões solenóide ou piloto (2 e 3 posições). As válvulas simples solenóide/simples piloto atuam através de um sinal elétrico/pneumático contínuo, sendo que as válvulas de duplo solenóide/duplo piloto atuam por meio de sinais alternados, ou seja, uma vez eliminado o sinal elétrico/pneumático a válvula manterá a posição do último sinal, exceto as de 3 posições, onde o sinal deve ser contínuo. As bobinas desta série de válvulas trabalham com corrente alternada ou contínua, conector elétrico de acordo com a Norma DIN 43650 Forma C, baixa potência, grau de proteção IP65, atuador manual, LED indicador e Supressor de Transientes. Montagem Esta série de válvulas pode trabalhar Inline ou em Manifold Modular, caracterizando grande flexibilidade de montagem com as seguintes vantagens: redução no custo de instalação, economia de espaço, grande flexibilidade de combinações de válvulas, melhoria no layout da instalação, escapes canalizados em ambos os lados do manifold, conservando limpo o local onde for aplicado, os pilotos externos podem ser utilizados em aplicações com baixa pressão ou vácuo. Vias/Posições 5/2 e 5/3 Conexão 1/8", 1/4" e 3/8" NPT ou G Tipo Construtivo Spool Vazão e Cv Vide Informações Adicionais Grau de Proteção IP 65 do Solenóide Faixa de Temperatura -10°C a +50°C Faixa de Pressão (bar) * 1,4 a 10 (5/2) 2,1 a 10 (5/3) Características Técnicas Pressão Mínima de 1,4 (5/2) 2,1 (5/3) Pilotagem (bar) ** Fluido Ar Comprimido Filtrado, Lubrificado ou Não * As válvulas podem operar com pressões inferiores ou vácuo, com o suprimento externo do piloto. ** A pressão de pilotagem deve ser igual ou superior à pressão de alimentação, porém nunca inferior a 1,4 bar nas válvulas de duas posições (2,1 bar para 3 posições) ou superior a 10 bar para ambos os tipos de válvulas. Lubrificação As válvulas são fornecidas pré-lubrificadas, sendo que, normalmente, não é necessária lubrificação adicional. Caso seja aplicada deverá ser mantida em regime contínuo através de um lubrificador de linha. Simbologia 35 4 2 1 14 12 Tecnologia Pneumática Industrial 68 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Esta movimentação é causada pelo ar contido na câmara do cilindro, que influencia a superfície inferior em relação à entrada e a desloca, pois não encontra a resistência superior oferecida pela pressão. Com o deslocamento da membrana, o escape fica livre e o ar é expulso rapidamente, fazendo com que o pistão adquira alta velocidade. Os jatos de exaustão são desagradavelmente ruidosos. Para se evitar a poluição sonora, devem ser utilizados silenciadores. Válvula de Isolamento (Elemento OU) Dotada de três orifícios no corpo: duas entradas de pressão e um ponto de utilização. Enviando-se um sinal por uma das entradas, a entrada oposta é automaticamente vedada e o sinal emitido flui até a saída de utilização. O ar que foi utilizado retorna pelo mesmo caminho. Uma vez cortado o fornecimento, o elemento seletor interno permanece na posição, em função do último sinal emitido. Havendo coincidência de sinais em ambas as entra- das, prevalecerá o sinal que primeiro atingir a válvula, no caso de pressões iguais. Com pressões diferentes, a maior pressão dentro de uma certa relação passará ao ponto de utilização, impondo bloqueio na pressão de menor intensidade. Muito utilizada quando há necessidade de enviar sinais a um ponto comum, proveniente de locais diferentes no circuito. Válvula de Isolamento, Elemento "OU" Simbologia 11 2 Exemplo de Aplicação de uma Válvula de Isolamento Comandar um Cilindro de Dois Pontos Diferentes 1 1 2 1 1 2 A a0 12 1 2 3 a4 1 2 3 a2 1 2 3 a.02 1 1 2 Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 69 Training O Primeiro Sinal se Autobloqueará… …Para que Somente Quando Houver o Segundo Sinal Haja Alimentação na Saída Válvula de Simultaneidade (Elemento E) Assim como na válvula de isolamento, também possui três orifícios no corpo. A diferença se dá em função de que o ponto de utilização será atingido pelo ar, quando duas pressões, simultaneamente ou não, chegarem nas entradas. A que primeiro chegar, ou ainda a de menor pressão, se autobloqueará, dando passagem para o outro sinal. São utilizadas em funções lógicas “E”, bimanuais simples ou garantias de que um determinado sinal só ocorra após, necessariamente, dois pontos estarem pressurizados. Simbologia 11 2 Exemplo de Aplicação de uma Válvula de Simultaneidade Comandar um Cilindro de Forma Bimanual 1 1 2 1 1 2 A a0 12 1 2 3 a2 1 2 3 a.02 1 1 2 a4 1 2 3 Tecnologia Pneumática Industrial 70 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining • Fluxo Livre - no sentido oposto ao mencionado an- teriormente, o ar possui livre vazão pela válvula de retenção, embora uma pequena quantidade passe através do dispositivo, favorecendo o fluxo. Estando o dispositivo de ajuste totalmente cerrado, esta válvula passa a funcionar como uma válvula de retenção. Quando se desejam ajustes finos, o elemento de controle de fluxo é dotado de uma rosca micrométrica que permite este ajuste. Válvulas de Controle de Fluxo Em alguns casos, é necessária a diminuição da quantidade de ar que passa através de uma tubulação, o que é muito utilizado quando se necessita regular a velocidade de um cilindro ou formar condições de temporização pneumática. Quando se necessita influenciar o fluxo de ar comprimido, este tipo de válvula é a solução ideal, podendo ser fixa ou variável, unidirecional ou bidirecional. Válvula de Controle de Fluxo Variável Bidirecional Simbologia 12 Válvula de Controle de Fluxo Variável Bidirecional Muitas vezes, o ar que passa através de uma válvula controladora de fluxo tem que ser variável conforme as necessidades. Observe-se a figura, a quantidade de ar que entra por 1 ou 2 é controlada através do parafuso cônico, em relação à sua proximidade ou afastamento do assento. Consequentemente, é permitido um maior ou menor fluxo de passagem. Válvula de Controle de Fluxo Unidirecional Algumas normas classificam esta válvula no grupo de válvulas de bloqueio por ser híbrida, ou seja, num único corpo unem-se uma válvula de retenção com ou sem mola e em paralelo um dispositivo de controle de fluxo, compondo uma válvula de controle unidirecional. Válvula de Controle de Fluxo Variável Unidirecional Simbologia 12 Válvula de Controle de Fluxo Variável Unidirecional Simbologia 12 2 1 2 1 2 1 Possui duas condições distintas em relação ao fluxo de ar: • Fluxo Controlado - em um sentido pré-fixado, o ar comprimido é bloqueado pela válvula de retenção, sendo obrigado a passar restringido pelo ajuste fixado no dispositivo de controle. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 73 Training Temporizador Pneumático Este temporizador permite o retardo de um sinal pneumático; um período de tempo ajustável que passa entre o aparecimento do sinal de controle pneumático e o sinal de saída. O ajuste é através da rotação do botão graduado, a faixa de ajuste é completada por uma revolução completa do botão. Faixas de ajuste de Temporização: 0 a 3 s 0 a 30 s 0 a 180 s Funcionamento O funcionamento é totalmente pneumático. O ar usado para a função de retardo é atmosférico e não ar de suprimento. Desta maneira, o retardo não é variado de acordo com a pressão, temperatura, umidade ou por impurezas no ar comprimido. Há Temporizador NF (Normal Fechado) e NA (Normal Aberto). Descrição de Funcionamento de um Temporizador NF O início da temporização se dá quando houver um sinal de controle na sub-base, este passa pelo filtro 1 e atua no pistão 2, o mesmo se retrai e inicia a temporização. No mesmo tempo, o sinal de controle passa pelo giclê 3 e entra em exaustão pelo orifício sensor 4. Na temporização, o elemento de retardo pneumático que está apoiado no pistão 2 é liberado, transmitindo este mesmo movimento para a válvula poppet 5, ocorrendo uma movimentação do conjunto correspon- dente à regulagem requerida de temporização. Após o fechamento da válvula poppet 5, a mola 6 causa a expansão do diafragma 7, aspirando ar atmosférico através do filtro 8 e do canal circular 9. Dependendo do ângulo x ajustado no botão de regulagem 10, este caminho pode ser curto ou longo, dependendo desta forma do ajuste feito. Se o ajuste do ângulo x é pequeno, a temporização é curta. Se o ajuste do ângulo x for grande, a temporização é longa. No final da temporização a válvula poppet 5 volta a bloquear a exaustão do orifício sensor 4, que causa a mudança de estado e fechamento da temporização. Por este motivo o suprimento de pressão P é fechado, não havendo mais sinal de saída em S. Com o desaparecimento do sinal em "a" ocorre o RESET (reajuste) do componente, provocando mudança de condição do temporizador e então removendo o sinal de saída. Simbologia a P S a P S t1 0t1 0 1 2 3 4 5 6 7 8 9 10 P a S Tecnologia Pneumática Industrial 74 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Captador de Queda de Pressão (Sensor de Queda de Pressão) Instalado diretamente nos pórticos dos cilindros, estes sensores enviam um sinal pneumático quando o cilindro está estendido em seu fim de curso. São muito simples de ser usar, não necessitam de um came mecânico para a sua atuação e liberam um sinal que pode ser usado diretamente. Obervação: O sensor enviará um sinal de saída só quando o cilindro estiver totalmente avançado. Funcionamento A velocidade do cilindro depende do fluxo de exaustão que é controlado por um regulador de velocidade. Existe a presença de uma pressão de retorno na exaustão, que cai quando o êmbolo alcança seu fim de curso. Por intermédio de um diafragma, o contato do captador de queda de pressão comuta e transmite a pressão P do sinal de entrada para o sinal de saída S. Este sensor é também usado para detectar fins de movimento de cilindros. Exemplo: cilindro de fixação. & Simbologia aP S Composição São Modulares: o mesmo banjo se adapta e pode ser usado com outros módulos de detecção, como os de saída de sinal pneumático, elétrico e eletrônico, o qual possibilita o uso destes sensores em sistemas totalmente automatizados pneumático ou eletropneu- mático. Adaptador para conexão do cilindro Anel de fixação Pneumático Elétrico Eletrônico Módulos conectáveis Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 75 Training 12 Contador Predeterminador Pneumático YZ P A São usados para controle e monitoramento de opera- ções seqüenciais capazes de demonstrar números precisos em circuitos pneumáticos, sistemas ou equipamentos. Após a contagem de passos demonstrará o número pré- ajustado, o qual pode representar um número de itens ou um número de ciclos de operação, e o mesmo emitirá um sinal pneumático de saída, que é usado para iniciar o próximo seguimento do processo ou operação. O valor pré-ajustado pode ser selecionado entre 1 e 99.999. Princípio de Trabalho O Contador Pneumático consiste de um sistema de acionamento mecânico, um sistema mecânico de dígitos circular e uma chave limite pneumática. Os pulsos de contagem para o contador são pneumáticos (ar comprimido) que vêm de uma fonte de informações. A conexão Z é usada como mecanismo alimentador de pulsos de ar comprimido para o pistão do sistema de acionamento. A haste deste pistão realiza a contagem de peças através de um contato livre de um oscilador. P = Alimentação A = Saída de Sinal Z = Contagem Y = Reset Cada pulso de ar comprimido causa o acionamento do oscilador que move a unidade de dígitos circular pela metade de um dígito e no mesmo instante tensiona uma mola. Isso ocorre durante o período de baixa pressão, após o pulso, e em seguida move a próxima metade da unidade de dígito circular, comple- tando o passo. A P YZ 1 3 2 1 3 2 1 3 2 10 10 Sinal de Saída O sinal de saída é enviado quando a pressão que está aplicada na conexão P é interligada com a conexão A, isto ocorre quando a contagem pré-ajustada é alcançada, e o Reset não foi acionado. Reset Pode ser feito o Reset do contador através do botão de Reset Manual ou aplicando-se um sinal pneumático na conexão Y. Sensor de Alívio (Bleed Sensor) Os sensores de alívio habilitam sinais com pequenas forças de atuação, pequenas distâncias de envio de sinal através de contato mecânico. Requerem um tubo para conexão, são sinais de conectar e instalar. 00000 Y Z P A Simbologias Tecnologia Pneumática Industrial 78 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Relé Amplificador Desacionado Acionado 3 1 Módulo de Segurança Bimanual Este módulo de segurança bimanual produz envio de um sinal pneumático, através de sinais aplicados em 2 pontos de entrada A e B, dentro de um intervalo de tempo menor que 0,3 segundos. Este módulo é indispensável para proteção das mãos do operador, para qualquer máquina potencialmente perigosa ou estação de trabalho: - Onde há necessidade de envio de sinais com aciona- mento quase simultâneo de controles manuais. - Se existir o movimento de um cilindro causando pe- rigo ao operador, o sinal de saída S pode comandar diretamente a válvula de controle direcional do cilindro. - Se, de outra forma, diversos movimentos no ciclo de uma máquina são perigosos, o sinal de saída S for- necido pelo módulo de segurança é usado pelo circuito seqüenciador em proteção ao operador de todos os passos perigosos. Funcionamento Quando o operador aciona o controle manual A ou B, ou os dois controles mas com uma diferença de tempo excedendo 0,3 segundos, o sinal de saída S não ocorre. Só ocorrerá o sinal de saída S se houver um acionamento quase simultâneo (menor que 0,3 segundos) pelo operador em ambos os controles A e B. O sinal de saída S ocorre se o pórtico P for alimentado, este sinal desaparecerá se a alimentação P for cortada. Se por qualquer causa desaparecer o sinal de S, o reacionamento quase simultâneo de A e B é necessário para o restabelecimento do sinal de saída S. Simbologia a P Sb S P a b A B 2 4 Px a S 3 1 2 4 Px a S 6 5 Acionador Manual Auxiliar Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 79 Training 7. Geradores de Vácuo, Ventosas Vácuo A palavra vácuo, originária do latim "Vacuus", significa vazio. Entretanto, podemos definir tecnicamente que um sistema encontra-se em vácuo quando o mesmo está submetido a uma pressão inferior à pressão atmosférica. Utilizando o mesmo raciocínio aplicado anteriormente para ilustrar como é gerada a pressão dentro de um recipiente cilíndrico, cheio de ar, se aplicarmos uma força contrária na tampa móvel do recipiente, em seu interior teremos como resultante uma pressão negativa, isto é, inferior à pressão atmosférica externa. Esse princípio é utilizado pela maioria das bombas de vácuo encontradas no mercado onde, por meio do movimento de peças mecânicas especialmente construídas para essa finalidade, procura-se retirar o ar atmosférico presente em um reservatório ou tubulação, criando em seu interior um "vazio", ou seja, uma pressão atmosférica externa. Um aspirador de pó caseiro, por exemplo, funciona a partir desse princípio. Quando ligamos o aspirador, uma bomba de vácuo acionada por um motor elétrico retira o ar atmosférico presente no interior da maira flexível, expulsando-o pela saída exaustora. Dessa maneira, gera-se uma pressão negativa na entrada do aspirador, de modo que a pressão atmosférica do ambiente, sendo maior que o vácuo parcial gerado na mangueira, entra pela tubulação, levando com ela as partículas sólidas próximas da extremidade da man- gueira. Essas partículas são então retidas dentro do aspirador, o qual permite que apenas o ar saia pelo pórtico de exaustão. A figura a seguir demonstra o fun- cionamento esquemático de um aspirador de pó que, por meio da técnica do vácuo, gera um fluxo contínuo de ar para captar e reter partículas sólidas presentes em superfícies expostas à pressão atmosférica. Efeito Venturi Para aplicações industriais, existem outras formas mais simples e baratas de se obter vácuo, além das bombas já mencionadas. Uma delas é a utilização do princípio de Venturi. A técnica consiste em fazer fluir ar comprimido por um tubo no qual um giclê, montado em seu interior, provoca um estrangulamento à passagem do ar. O ar que flui pelo tubo, ao encontrar a restrição, tem seu fluxo aumentado devido à passagem estreita. O aumento do fluxo do ar comprimido, no estrangula- mento, provoca uma sensível queda de pressão na região. Um orifício externo, construído estrategicamente na região restringida do tubo, sofrerá então uma depres- são provocada pela passagem do ar comprimido pelo estrangulamento. Isso significa que teremos um vácuo parcial dentro do orifício que, ligado à atmosfera, fará 1 - Uma força de 2 kgf, é aplicada … 2 - … na tampa móvel cuja área mede 2 cm2 3 - Resultará numa pressão negativa de -1 kgf/cm2 4 - Gerando um vácuo de -1 kgf/cm2, no interior do recipiente 5 - Essa pressão negativa, depressão, é inferior à pressão atmosférica externa a qual está submetido o recipiente 2 cm2 -1 kgf/cm2 2 kgf As partículas sólidas são retidas no interior do aspirador Bomba de vácuo Exaustão Aspiração Tecnologia Pneumática Industrial 80 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining com que o ar atmosférico, cuja pressão é maior, penetre no orifício em direção à grande massa de ar que flui pela restrição. A figura a seguir ilustra como é gerado um vácuo pelo princípio de Venturi. Outra forma muito utilizada para se obter vácuo é por meio da técnica do injetor de ar, uma derivação do efeito Venturi visto acima. Nessa técnica, pressuriza-se um bico injetor com ar comprimido e, nas proximidades do pórtico de descarga para a atmosfera, constrói-se um orifício late- ral perpendicular à passagem do fluxo de ar pelo injetor. O ar comprimido, fluindo a grande velocidade pelo injetor, provoca um vácuo parcial no orifício lateral que, conectado à atmosfera, fará com que o ar atmosférico penetre por ele em direção à massa de ar que flui pelo injetor. A próxima figura ilustra esquematicamente o funcionamento do bico injetor e o vácuo parcial gerado no orifício lateral. Partindo desse princípio, se uma ventosa flexível for montada no pórtico de vácuo parcial A, ao aproximá- la de um corpo qualquer, de superfície lisa, a pressão atmosférica, agindo na face externa da ventosa, fará com que a mesma se prenda por sucção à superfície do corpo. Considerando-se que entre a ventosa e a superfície do corpo há um vácuo parcial cuja pressão é menor que a da atmosfera, a ventosa permanecerá presa à superfície do corpo pela ação da pressão atmosférica, enquanto houver vácuo, ou seja, durante o tempo em que for mantido o fluxo de ar comprimido de P para R. Essa técnica, conhecida como tecnologia do vácuo, vem crescendo dia após dia na indústria, tanto na manipulação de peças como no transporte de materiais a serem trabalhados. Seja qual for a aplicação, no projeto de um sistema de vácuo, é importante serem observados os seguintes aspectos: - O efeito do ambiente sobre os componentes do sistema; - As forças necessárias para movimentação das peças ou materiais; - O tempo de resposta do sistema; - A permeabilidade dos materiais a serem manipulados ou transportados; - O modo como as peças ou materiais serão fixados; - A distância entre os componentes; - Os custos envolvidos na execução do projeto. 1 - O ar comprimido entra pelo pórtico P… 2 - … e sai para atmosfera pelo pórtico R 3 - A restrição provoca um aumento na velocidade do fluxo de ar … 4 - … gerando um vácuo parcial neste orifício, por onde o ar atmosférico penetra do pórtico A 1 - O ar comprimido entra no bico injetor pelo pórtico P 2 - E escapa para a atmosfera através do pórtico de exaustão R 3 - A massa de ar, fluindo de P para R, provoca um vácuo parcial no orifício A 4 - Por onde entra o ar atmosférico cuja pressão é maior que a do vácuo parcial gerado 1 - Enquanto o elemento gerador de vácuo estiver sob pressão do ar comprimido… 2 - Elemento gerador de vácuo 3 - A pressão atmosférica, agindo na superfície externa da ventosa, mantém a ventosa presa à peça 2 - … forma-se um vácuo entre a ventosa e a peça Ventosa Peça P R A Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 83 Training utilizado o maior nível de vácuo disponível no sistema. Experiências demonstram que o nível ideal de vácuo para trabalhos seguros de fixação e transporte de cargas por meio de ventosas está em torno de 75% do vácuo absoluto, o que corresponde a uma pressão negativa de -0,75 Kgf/cm2. A tabela a seguir estabelece relações entre os diâmetros das ventosas e as capacidades de levantamento de cargas. Observe que as ventosas apresentam maior eficiência na sustentação de cargas com superfícies horizontais, comparadas às verticais. Tabela de Capacidade de Carga para Ventosas Planas a 75% de Vácuo 5,0 0,19 0,69 0,071 0,35 0,036 10,0 0,78 2,86 0,292 1,43 0,146 15,0 1,76 6,47 0,66 3,23 0,33 20,0 3,14 11,54 1,177 5,76 0,588 25,0 4,90 18,02 1,837 9,00 0,918 30,0 7,06 25,96 2,647 12,97 1,323 35,0 9,61 35,34 3,603 17,66 1,801 40,0 12,56 46,20 4,71 23,05 2,35 45,0 15,89 58,44 5,958 29,22 2,979 50,0 19,62 72,17 7,357 36,08 3,678 55,0 23,74 87,32 8,902 43,66 4,451 60,0 28,26 103,95 10,597 51,97 5,298 65,0 33,16 121,98 12,435 60,98 6,217 70,0 38,46 141,47 14,422 70,73 7,211 75,0 44,15 162,41 16,556 81,20 8,278 80,0 50,24 184,82 18,84 92,41 9,42 85,0 56,71 208,61 21,266 104,30 10,633 90,0 63,58 233,89 23,842 116,94 11,921 95,0 70,84 260,60 26,565 130,29 13,282 100,0 78,54 288,92 29,452 144,46 14,726 120,0 113,04 415,84 42,39 207,92 21,195 150,0 176,62 649,73 66,232 324,86 33,116 200,0 314,00 1155,12 117,75 577,56 58,875 300,0 706,86 2600,35 265,076 1300,17 132,536 Ø da Ventosa em mm Área em cm2 Força de Levantamento Superfície Horizontal Superfície Vertical em N em Kgf em N em Kgf Uma ventosa de 40 mm de diâmetro, por exemplo, apresenta uma força de levantamento de 4,709 Kgf se a carga possuir uma superfície horizontal. Em contrapartida, se a carga for erguida por meio de uma superfície vertical, a mesma ventosa tem uma força de levantamento de apenas 2,354 Kgf. Tecnologia Pneumática Industrial 84 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Ventosa Padrão O tipo mais comum de ventosa, utilizado na fixação e transporte de cargas que apresentam superfícies planas ou ligeiramente curvas, é a ventosa padrão. A ventosa padrão é produzida com diferentes formas, que variam de acordo com sua aplicação. O tamanho, o tipo do material, as abas simples ou duplas para vedação, as luvas de atrito e as molas de reforço são algumas características que podem se alterar na fabricação da ventosa. Tecnologia Pneumática Industrial Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 85 Training 8. Atuadores Pneumáticos Vimos anteriormente como é gerado e preparado o ar comprimido. Veremos agora como ele é colocado para trabalhar. Na determinação e aplicação de um comando, por regra geral, se conhece inicialmente a força ou torque de ação final requerida, que deve ser aplicada em um ponto determinado para se obter o efeito desejado. É necessário, portanto, dispor de um dispositivo que converta em trabalho a energia contida no ar comprimido. Os conversores de energia são os dispositivos utilizados para tal fim. Num circuito qualquer, o conversor é ligado mecanicamente à carga. Assim, ao ser influenciado pelo ar comprimido, sua energia é convertida em força ou torque, que é transferido para a carga. Classificação dos Conversores de Energia Estão divididos em três grupos: - Os que produzem movimentos lineares - Os que produzem movimentos rotativos - Os que produzem movimentos oscilantes Lineares São constituídos de componentes que convertem a energia pneumática em movimento linear ou angular. São representados pelos Cilindros Pneumáticos. Dependendo da natureza dos movimentos, velocidade, força, curso, haverá um mais adequado para a função. Rotativos Convertem energia pneumática em energia mecânica, através de momento torsor contínuo. Oscilantes Convertem energia pneumática em energia mecânica, através de momento torsor limitado por um determinado número de graus. Tecnologia Pneumática Industrial 88 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Cilindros Mini ISO Reparáveis Descrição Esta versão de cilindros Série Mini ISO é indicada para uso em aplicações gerais, sendo particularmente apropriada às indústrias de embalagens, alimentícias e têxteis. Devido ao material utilizado, esta série de cilindros permite contato direto com água. Os cilindros são fornecidos pré-lubrificados, sendo que, normalmente, não é necessária lubrificação adicional. Caso seja aplicada, deverá ser mantida em regime contínuo através de um lubrificador de linha. Esta série possui um sistema de desmontagem dos cabeçotes, permitindo a troca de vedações, proporcionando maior vida útil ao produto e redução do custo de manutenção. Todas as montagens estão de acordo com as normas ISO 6432 e CETOP RP 52P, garantindo facilidade de instalação e total intercambialidade. Os novos cilindros Mini ISO estão disponíveis nos diâmetros 10, 12, 16, 20 e 25 mm, êmbolo magnético standard e amortecimento pneumático fixo (todos) ou ajustável (Ø 25 mm). Versões Disponíveis - Dupla Ação com Amortecimento Fixo. - Dupla Ação com Amortecimento Ajustável (Ø 25 mm). - Dupla Ação com Haste Passante. Pré-lubrificados com graxa Lube-A-Cyl. ∆ Materiais Haste Aço Inoxidável Vedação da Haste Poliuretano Mancal da Haste Acetal Cabeçotes Alumínio Anodizado Vedações Poliuretano (Ø 10, 12 e 16 mm) Buna-N (Ø 20 e 25 mm) Diâmetros 10,12,16,20 e 25 mm Tipo Dupla Ação Faixa de Pressão Até 10 bar Faixa de Temperatura -20°C a +80°C Fluido Ar Comprimido Filtrado, Lubrificado ou Não Características Técnicas Camisa do Cilindro Aço Inoxidável Êmbolo Alumínio Simbologia Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 89 Training Tecnologia Pneumática Industrial * Consumo de ar para um ciclo com 10 mm de curso a 6 bar. Força Estática Peso e Consumo de Ar 1 2 3 4 5 6 7 8 9 10 5,3 13,5 21,5 28,5 36,5 44,5 52,5 60,5 68,5 75,5 78,5 4,2 10,5 17,5 23,5 30,5 37,5 43,5 50,5 56,5 63,5 66,0 8,8 20,5 31,5 42,5 54,5 65,5 76,5 87,5 99,5 110,5 113,0 6,0 14,5 22,5 31,5 39,5 48,5 56,5 65,5 73,5 82,5 85,0 17,5 37,0 57,0 77,0 98,0 118,0 138,0 158,0 178,0 198,0 201,0 14,7 32,0 49,0 66,0 83,0 101,0 118,0 135,0 152,0 170,0 173,0 28,7 60,0 91,0 123,0 154,0 185,0 217,0 248,0 280,0 311,0 314,0 23,7 50,0 76,0 103,0 129,0 155,0 182,0 208,0 234,0 261,0 264,0 45,0 94,0 143,5 192,5 241,5 291,5 341,5 389,5 438,5 487,5 490,0 37,5 78,5 120,5 161,5 202,5 243,5 285,5 326,5 367,5 408,5 412,0 AvançoØ do Cilindro Área Efetiva (mm2) Força Efetiva (N) / Pressão (bar) 25 20 16 12 10 Retorno As forças indicadas são teóricas e podem sofrer alterações de acordo com as condições de trabalho. ∆ Peso Peso Consumo (Curso "0") (10 mm de Curso) de Ar* Ø Área Rosca Ø Área Rosca kgf kgf I (mm) (cm2) (mm) (cm2) 10 0,79 M5 4 0,13 M4x0,7 0,05 0,003 0,0260 12 1,13 M5 6 0,28 M6x1 0,08 0,004 0,0146 16 2,01 M5 6 0,28 M6x1 0,10 0,005 0,0101 20 3,14 1/8 G 8 0,50 M8x1,25 0,23 0,007 0,0405 25 4,91 1/8 G 10 0,78 M10x1,25 0,34 0,011 0,0633 Versão Cilindro Haste Dupla Ação Cilindro Mini ISO Tecnologia Pneumática Industrial 90 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Tipos de Cilindros Pneumáticos Os cilindros se diferenciam entre si por detalhes construtivos, em função de suas características de funcionamento e utilização. Basicamente, existem dois tipos de cilindros: - Simples Efeito ou Simples Ação - Duplo Efeito ou Dupla Ação, com e sem amorteci- mento. Além de outros tipos de construção derivados como: - Cilindro de D.A. com haste dupla - Cilindro duplex contínuo (Tandem) - Cilindro duplex geminado (múltiplas posições) - Cilindro de impacto - Cilindro de tração por cabos Cilindro de Simples Efeito ou Simples Ação Recebe esta denominação porque utiliza ar comprimi- do para conduzir trabalho em um único sentido de mo- vimento, seja para avanço ou retorno. Este tipo de cilindro possui somente um orifício por onde o ar entra e sai do seu interior, comandado por uma válvula. Na extremidade oposta à de entrada, é dotado de um pequeno orifício que serve de respiro, visando impedir a formação de contrapressão internamente, causada pelo ar residual de montagem. O retorno, em geral, é efetuado por ação de mola e força externa. Quando o ar é exaurido, o pistão (haste + êmbolo) volta para a posição inicial. Pelo próprio princípio de funcionamento, limita sua construção a modelos cujos cursos não excedem a 75 mm, para diâmetro de 25 mm, ou cursos de 125 mm, para diâmetro de 55 mm. Para cursos maiores, o re- torno é propiciado pela gravidade ou força externa, porém o cilindro deve ser montado em posição vertical, conforme A, onde o ar comprimido realiza o avanço. A carga W, sob a força da gravidade, efetua o retorno. O retorno também pode ser efetuado por meio de um colchão de ar comprimido, formando uma mola pneumática. Este recurso é utilizado quando os cursos são longos e a colocação de uma mola extensa seria inconveniente. Neste caso, utiliza-se um cilindro de dupla ação, onde a câmara dianteira é mantida pressurizada com uma pressão pré-calculada, formando uma mola que, Cilindro Simples Ação Retorno por Mola Cilindro de Simples Ação com Avanço por Mola e Retorno por Ar Comprimido Cilindro Simples Ação Retorno por Força Externa Simbologia Simbologia Simbologia P Vent. Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 93 Training Tecnologia Pneumática Industrial Cilindro de Haste Dupla Este tipo de cilindro (D.A.) de haste dupla vem encontrando grandes aplicações na indústria. Possui duas hastes unidas ao mesmo êmbolo. Enquanto uma das hastes realiza trabalho, a outra pode ser utilizada no comando de fins de curso ou dispositivos que não possam ser posicionados ao longo da oposta. Apresentam ainda a possibilidade de variação do curso de avanço, o que é bastante favorável, principalmente em operações de usinagem. As duas faces do êmbolo possuem geralmente a mesma área, o que possibilita transmitir forças iguais em ambos os sentidos de movimentação. Apresenta dois mancais de guia, um em cada cabeçote, oferecendo mais resistência a cargas laterais, que podem ser causadas pela aplicação, bem como melhor alinhamento. De acordo com o dispositivo em que for adaptado, este cilindro pode apresentar uma série de outras aplicações. Pode ser fixado pelas extremidades das hastes, deixando o corpo livre, ou fixado pelo corpo, permitindo que as hastes se desloquem. Como exemplo típico, considera- se o caso da automação de mesas de máquinas operatrizes e máquinas de injeção. Cilindro de Dupla Ação e Haste Dupla Simbologia Tecnologia Pneumática Industrial 94 Parker Hannifin Ind. Com. Ltda. Jacareí, SP - BrasilTraining Regulagem de Curso nos Cilindros de Dupla Ação Neste caso, a regulagem é feita por intermédio de um parafuso que atravessa o cabeçote traseiro, permitindo que o curso seja regulado conforme o deslocamento do parafuso. Regulagem de Curso nos Cilindros de Haste Dupla Um tubo metálico é roscado na extremidade prolonga- da da haste. A seguir, é roscada uma porca. Este tubo metálico servirá de espaçador e a porca será para sua fixação. Com o deslocamento do pistão, o tubo encosta no cabeçote do cilindro, limitando o curso. Para se efetuar variação no curso, a porca é afrouxada, o tubo é deslocado para o curso desejado e depois fixado novamente. É possível se conseguir regulagem do curso de um cilindro por meio de válvulas estrategicamente colocadas durante o curso e que são acionadas por meio de dispositivos de cames, ligados à própria haste do cilindro. Ao serem acionadas, enviam sinais que irão proporcionar a parada do pistão, revertendo ou não o sentido do movimento. Cilindro Duplex Contínuo ou Cilindro Tandem Dotado de dois êmbolos unidos por uma haste comum, separados entre si por meio de um cabeçote interme- diário, possui entradas de ar independentes. Devido à sua forma construtiva, dois cilindros (de Dupla Ação) em série numa mesma camisa, com entradas de ar independentes, ao ser injetado ar comprimido simultaneamente nas duas câmaras, no sentido de avanço ou retorno, ocorre atuação sobre as duas faces do êmbolo, de tal modo que a força produzida é a somatória das forças individuais de cada êmbolo. Isto permite dispor de maior força, tanto no avanço como no retorno. Cilindro Duplex Contínuo ou Cilindro Tandem Simbologia Parker Hannifin Ind. Com. Ltda. Jacareí, SP - Brasil 95 Training Tecnologia Pneumática Industrial Aplicado em casos onde se necessitam maiores forças, porém não dispondo de espaço para comportar um cilindro de diâmetro maior, e não pode elevar muito a pressão de trabalho - a sua aplicação podendo superar o problema. Em sistemas de sincronismo de movimentos é muito empregado; as câmaras intermediárias são preenchidas com óleo. Quando da sua utilização, deve-se levar em considera- ção o seu comprimento, que é maior. Há necessidade, portanto, de profundidades ou vãos diferentes para seu posicionamento, principalmente em função do curso desejado. Cilindro Duplex Geminado Consiste em dois ou mais cilindros de dupla ação, uni- dos entre si, possuindo cada um entradas de ar independentes. Essa união possibilita a obtenção de três, quatro ou mais posições distintas. As posições são obtidas em função da combinação entre as entradas de ar comprimido e os cursos correspondentes. É aplicado em circuitos de seleção, distribuição, posicionamentos, comandos de dosagens e transportes de peças para operações sucessivas. Cilindro Duplex Geminado ou Múltiplas Posições Simbologia 1 2 3 1 2 3 4
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved