Apostila Relação água-solo-planta-UFC

Apostila Relação água-solo-planta-UFC

(Parte 1 de 8)

Claudivan Feitosa de Lacerda

Engenheiro Agrônomo/UFC MS, Solos e Nutrição de Plantas/UFC DS, Fisiologia Vegetal/UFV Professor Adjunto

Departamento de Engenharia Agrícola Centro de Ciências Agrárias Universidade Federal do Ceará

Fortaleza – Ceará Maio de 2004

1. A ÁGUA E O SEU CICLO NA AGRICULTURA 2 2. ATRIBUTOS FÍSICOS DO SOLO 9 3. COMPOSIÇÃO E CARACTERIZAÇÃO DA ATMOSFERA 12 4. ORGANIZAÇÃO ESTRUTURAL DAS PLANTAS 14

5. ENERGIA TOTAL DA ÁGUA NO SISTEMA 24 6. MOVIMENTO DE ÁGUA NO SOLO 29 7. ABSORÇÃO DE ÁGUA PELAS PLANTAS 31 8. TRANSPORTE DE ÁGUA PARA A PARTE AÉREA 37 9. TRANSFERÊNCIA DE ÁGUA PARA A ATMOSFERA 42

PARTE C – QUANTIFICAÇÃO DA ÁGUA NO SISTEMA 10. METODOLOGIAS PARA QUANTIFICAÇÃO DA ÁGUA 52

1. ESTRESSE HÍDRICO EM PLANTAS 65 12. ESTRESSE SALINO EM PLANTAS 73

13. ABSORÇÃO E TRANSPORTE DE ELEMENTOS MINERAIS 82 14. O FLUXO FLOEMÁTICO 96

BIBLIOGRAFIA 104

PARTE A - CONHECENDO A ESTRUTURA DO SISTEMA UNIDADE 1. A ÁGUA E O SEU CICLO NA AGRICULTURA

A água é a substância mais reciclável da natureza. Na faixa de temperatura que ocorre sobre a terra ela pode ser encontrada nos estados sólido, líquido e gasoso, e as condições ambientais permitem constantes mudanças de estado.

O vapor d’água na atmosfera em condições especiais forma as nuvens, podendo retornar à superfície na forma de chuva (estado líquido), granizo ou neve (estado sólido). A chuva, principal forma de precipitação na nossa região, ao atingir a superfície do solo nele se infiltra, podendo ocorrer escoamento de parte da água sobre a superfície do solo (Figura 1.1). Esse escoamento superficial ou “run-off” pode ser maior ou menor, dependendo da intensidade da chuva, da declividade e das características físicas do solo. Em geral, quanto maior o escoamento superficial maiores são as perdas de solo por erosão.

Figura 1.1 – O ciclo da água na agricultura (Reichardt, 1990).

A água que se infiltra no solo fica armazenada nos seus poros, ficando parte dela disponível para as plantas. Quando o volume de água ultrapassa a capacidade de armazenamento do solo, o excedente é percolado para horizontes mais profundos, contribuindo para a recarga dos aqüíferos subterrâneos.

A água dentro do solo não permanece estática e, em geral, nem todos os poros do solo ficam preenchidos com água. Nos solos não saturados, uma parte dos poros fica cheia de ar, constituindo a atmosfera do solo, fundamental para a respiração dos microorganismos e das raízes de plantas. Nos tortuosos poros cheios de água pode-se observar movimento de água em todas as direções, em geral de regiões mais úmidas para regiões mais secas. Por exemplo, quando horizontes mais superficiais se encontram mais secos que os horizontes mais profundos pode-se observar a ascensão capilar, ou seja, um movimento ascendente de água que em alguns casos específicos pode atingir a superfície do solo.

A água no solo e nos cursos de água evapora constantemente, sendo a taxa de evaporação dependente da energia solar disponível para conversão da água líquida para a forma de vapor. A água no solo é também retirada pelas raízes das plantas e depois evapora no interior das folhas, sendo posteriormente transferidas para a atmosfera pela transpiração. O processo conjunto que envolve a evaporação direta do solo e a transpiração das plantas é denominado evapotranspiração, sendo fundamental para realimentar a atmosfera com vapor de água. A taxa da evapotranspiração depende basicamente da demanda da atmosfera, da intensidade de radiação e da disponibilidade de água no solo.

A vida teve origem na água e todas as formas de vida estão de alguma forma intimamente ligadas à água. A fitomassa é em sua maior parte composta de água. O protoplasma contém em média 85 a 90% de água e mesmo as organelas ricas em proteínas e lipídeos, como os cloroplastos e as mitocôndrias, contêm 50% de água. Os frutos com alto conteúdo de polpa são especialmente ricos em água (85 a 95% do peso fresco); as folhas tenras possuem de 80 a 90% e as raízes de 70-95%. A madeira recém-colhida contém aproximadamente 50% de água. Por outro lado, as sementes colhidas são pobres em água (a maioria das sementes armazenadas apresenta valores entre 10 e 15%), sendo que algumas sementes que acumulam óleos contêm de 5 a 7% de água apenas.

É importante destacar que o conteúdo de água, além de variar com os tipos de células e tecidos, também é bastante influenciado pelas condições ambientais e pela fisiologia da planta. Assim, o conteúdo de água de plantas depende do nível de atividades metabólicas, do estado hídrico do ar e do solo, e de um conjunto de outros fatores. De modo geral, os tecidos em crescimento ou com alta atividade metabólica não suportam graus elevados de desidratação, tornando evidente que a água executa funções vitais no vegetal e, sem ela, a vida como conhecemos poderia não existir. Podemos destacar as seguintes funções da água nos vegetais:

• Age como solvente para nutrientes minerais e substâncias orgânicas;

• Contribui fundamentalmente para a absorção e transporte de minerais das raízes para as folhas, via xilema, e para a translocação de substâncias orgânicas e de minerais, via floema;

• Forma o ambiente adequado onde a maioria das reações bioquímicas ocorre, participando em muitas delas como reagente (hidrólises). É também a fonte de elétrons na fotossíntese;

• Influencia a estrutura e, conseqüentemente, a função de macromoléculas (proteínas, ácidos nucléicos, polissacarídeos, etc.) e de membranas.

• É responsável pela manutenção da turgescência e, portanto, contribui para o crescimento e para a manutenção da forma e estrutura dos tecidos tenros;

• Contribui para que as plantas não sofram tanto com as flutuações de temperatura do ambiente.

De todos os recursos que a planta necessita para o crescimento e função, a água é o mais abundante, executando as funções vitais descritas acima. Deste modo, a sua falta ou deficiência limitam a produtividade vegetal, tanto em ecossistemas naturais como em cultivos. Isso é marcante no semi-árido brasileiro, o que torna a prática da irrigação tão importante para a nossa agricultura. Neste caso, torna-se de fundamental importância estimar as necessidades hídricas das culturas nos seus diferentes estádios de desenvolvimento, buscando-se obter elevadas produtividades com o uso racional dos recursos hídricos. Para isso, faz-se necessário o conhecimento de solo, do clima e da planta (o gargalo do sistema solo-planta-atmosfera).

Estrutura da Molécula

A molécula de água consiste de um átomo de oxigênio covalentemente ligado a dois átomos de hidrogênio. A água é formada por mais de uma espécie molecular, desde que, existem três tipos de isótopos de H (H1, H2 e H3) e três isótopos de O (O16, O17 e O18), os quais podem ser combinados em 18 diferentes modos. No entanto, as quantidades de isótopos presentes que não sejam o hidrogênio e o oxigênio comuns (H1 e O18) são muito pequenas.

Muitas das propriedades da água dependem do arranjo espacial dos átomos de H e O. Na configuração espacial da molécula de água o oxigênio fica no centro de um tetraedro regular com seus orbitais híbridos dirigindo-se para os vértices e unindo-se aos dois aos dois átomos de hidrogênio, sendo que as duas ligações O – H formam um ângulo entre si de 105o. O oxigênio é fortemente eletronegativo e tende a atrair em sua direção os elétrons dos átomos de hidrogênio.

Conseqüentemente, o oxigênio adquire uma carga negativa parcial (δ-), enquanto que os dois átomos de hidrogênio se tornam positivamente carregados (δ+). Esta distribuição assimétrica de cargas, torna a água uma molécula polar.

Embora a carga líquida da molécula de água seja zero, a separação de cargas positivas e negativas gera uma forte atração mútua entre moléculas de água adjacentes e entre moléculas de água e algumas macromoléculas e superfícies coloidais. Nestes casos, as ligações predominantes são as interações dipolo-dipolo e as conhecidas pontes de hidrogênio. As pontes de hidrogênio são fundamentais para as interações intermoleculares e ocorrem quando átomos de H são encontrados entre dois centros eletronegativos. Como veremos adiante, as pontes de H são determinantes da maioria das propriedades da água e de suas funções nos vegetais.

Na água pode-se observar, também, as interações de van de Walls, as quais se desenvolvem pela tendência que tem um núcleo (positivamente carregado) de uma molécula de atrair os elétrons (negativamente carregados) de moléculas vizinhas. Essas forças são relativamente fracas, sendo efetivas apenas quando as moléculas estão próximas umas das outras.

Estrutura da Água Líquida e Sólida

densidade do gelo

Como comentamos anteriormente, a distribuição líquida das cargas na molécula de água formam um tetraedro, com duas extremidades negativas e duas positivas. Por conseguinte, cada molécula de água tende a se unir, através de pontes de H, com quatro outras moléculas. Isso tem sido observado nos cristais de gelo, os quais formam estruturas hexagonais com grandes espaços vazios no centro. Quando o gelo se funde, as ligações de H são estendidas e as moléculas afastam-se entre si, com a distância entre os átomos de O aumentando de 2,75 Å para 2,90 Å, em média. Essa modificação abriria a estrutura ainda mais e faria a água líquida menos densa, se não fosse o fato de que ao tornar-se fluida, suas moléculas se unem entre si, formando grupos compactos, conhecidos como agregados. Ao invés de quatro, cada molécula de água no estado líquido é agora circundada pó um número maior de moléculas vizinhas. Isto resulta no colapso parcial da estrutura do gelo e um aumento na densidade da água, alcançando o máximo em 4oC. Quando a temperatura sobe acima de 4oC, ocorre um aumento na agitação térmica das moléculas, induzindo um pequeno decréscimo na densidade, porém permanecendo ainda bem superior à

A menor densidade do gelo, em relação à da água líquida, assume relativa importância em regiões muito frias. Nestas regiões, o gelo flutua nas superfícies dos lagos ao invés de descer para o fundo, sendo isto extremamente importante para a sobrevivência de organismos aquáticos de todos os tipos, os quais vivem no fundo desses reservatórios de água.

forças de atração que as moléculas de água desenvolvem entre si

Por outro lado, a forte atração das moléculas de água no estado líquido é fundamental na determinação das estruturas de macromoléculas (proteínas, por exemplo) e de outras estruturas celulares (como as membranas), influenciando diretamente nas suas funções. As membranas celulares são formadas de proteínas e de uma bicamada de fosfolipídeos (os quais possuem uma parte hidrofílica e outra hidrofóbica). Neste caso, as partes hidrofóbicas das duas camadas se unem por interações hidrofóbicas e as partes hidrofílicas interagem com a água. Verifica-se então, a maximização das interações hidrofóbicas e hidrofílicas, sendo que os grupos polares da membrana são expostos à água com o conseqüente deslocamento dos grupos não polares para o interior da estrutura. Esses tipos de interações são também determinantes para a estrutura terciária das proteínas. De modo geral, pode-se dizer que as interações hidrofóbicas entre moléculas biológicas ou dentro de uma mesma molécula resultam, principalmente, das intensas

Temperatura e Estado Físico

A propriedade mais simples e, talvez, mais importante da água, é que ela é líquida na faixa de temperatura compatível com a vida. Em geral, os pontos de fusão e ebulição se relacionam com o tamanho molecular e, as mudanças de estado físico para pequenas moléculas ocorrem em temperaturas menores do que para as grandes. Isto é observado em algumas moléculas, como amônia e hidrocarbonetos (metano e etano), as quais são agrupadas através das fracas forças de Van der Waals e a energia requerida para mudança de estado é relativamente pequena. Estas moléculas são encontradas como gases em temperaturas ambientes (Tabela 1.1).

Tabela 1.1 – Algumas propriedades físicas da água e de outras moléculas de similar tamanho molecular (Hopkins, 2000).

Molécula Massa

Molecular (Da)

Calor

Específico (J/g/oC)

Ponto de fusão (oC)

Calor de fusão (J/g)

Ponto de Ebulição (oC)

Calor de vaporização J/g)

Água 18 4,2 0 335 100 2452 Amônia 17 5,0 -7 452 -3 1234

CO2 4 - -57 180 -78 301 Metano 16 - -182 58 -164 556

Etano 30 - -183 96 -8 523 Metanol 32 2,6 -94 100 65 1226 Etanol 46 2,4 -117 109 78 878

Com base no seu tamanho somente, era de se esperar que a água também ocorresse na forma de vapor nas temperaturas encontradas na maior parte da terra, o que não ocorre na realidade. Estas diferenças estão associadas à presença do oxigênio na molécula de água, o qual introduz a polaridade e a oportunidade de formação de pontes de hidrogênio, fortalecendo as interações intermoleculares e aumentando a quantidade de energia requerida para separar estas moléculas. Outras moléculas que contêm oxigênio, como etanol e metanol, também possuem pontos de ebulição próximos ao da água (Tabela 1.1).

Absorção e Dissipação de Calor

O termo calor específico é usado para descrever a capacidade térmica de uma substância, ou seja, a quantidade de energia que pode ser absorvida pela substância para um determinado aumento de sua temperatura. O calor específico da água é 4,184 J g-1 oC-1, sendo maior do que o da maioria das substâncias, exceto amônia líquida (Tabela 1.1). Esse alto calor específico da água está associado ao arranjo de suas moléculas, o qual permite que os átomos de O e H vibrem livremente, como se fossem átomos livres. Para as plantas isso é particularmente importante, pois reduz os danos relacionados às flutuações de temperatura do ambiente.

A estrutura ordenada das moléculas de água na forma líquida também assegura uma alta capacidade de condução de calor, ou seja, alta condutividade térmica. Isso significa que a água conduz calor rapidamente de um ponto para outro. Desta forma, a combinação do alto calor específico com a alta condutividade térmica faz com que a água absorva e redistribua grandes quantidades de energia calorífica, sem que ocorra um grande aumento de temperatura. Para os tecidos vegetais que consistem de grande proporção de água, isto assegura um alto grau e estabilidade de temperatura.

Fusão e Vaporização da Água

Um certo montante de energia é requerido para causar uma mudança de estado de uma substância, como do sólido para o líquido ou do líquido para o gasoso, sem que ocorra mudança de temperatura. O montante de energia requerido para converter uma substância do estado sólido para o líquido é conhecido como calor de fusão. No caso da água, 335 J são requeridos para converter 1 grama de gelo para 1 grama de água líquida em 0 oC (Tabela 1.1). Este alto calor de fusão da água é atribuído à grande quantidade de energia necessária para sobrepujar as forças intermoleculares associadas às pontes de hidrogênio.

Assim como as pontes de hidrogênio aumentam a energia requerida para fundir o gelo, elas também aumentam a energia requerida para evaporar a água. O calor de vaporização da água, ou seja, a energia requerida para converter 1 mol de água líquida para um mol de água na forma de vapor, é cerca de 4 kJ mol-1 em 25 oC. Este alto calor de vaporização da água significa que as plantas podem perder uma substancial quantidade de calor quando a água evapora das superfícies foliares. Tal perda de calor é um importante mecanismo para regulação da temperatura em folhas de plantas terrestres que estão expostas, freqüentemente, às intensas radiações do sol. Como veremos na unidade 10, o resfriamento das folhas é considerado um importante papel da transpiração.

(Parte 1 de 8)

Comentários