Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Calderaria - Metrologia Básica, Notas de estudo de Cálculo

Noções de medidas, Transformação de Unidades, Cálculos de Área, Paquímetro...

Tipologia: Notas de estudo

2013

Compartilhado em 24/02/2013

Natalino_Vieira_de_Oliveira10
Natalino_Vieira_de_Oliveira10 🇧🇷

4.6

(66)

109 documentos

Pré-visualização parcial do texto

Baixe Calderaria - Metrologia Básica e outras Notas de estudo em PDF para Cálculo, somente na Docsity! Espírito Santo CPM - Programa de Certificação de Pessoal de Manutenção Caldeiraria Metrologia Básica Espírito Santo Metrologia Básica - Caldeiraria © SENAI - ES, 1997 Trabalho realizado em parceria SENAI / CST (Companhia Siderúrgica de Tubarão) Coordenação Geral Supervisão Elaboração Aprovação Editoração Luís Cláudio Magnago Andrade (SENAI) Marcos Drews Morgado Horta (CST) Alberto Farias Gavini Filho (SENAI) Rosalvo Marcos Trazzi (CST) Carlos Roberto Sebastião (SENAI) José Geraldo de Carvalho (CST) José Ramon Martinez Pontes (CST) Tarcilio Deorce da Rocha (CST) Wenceslau de Oliveira (CST) Ricardo José da Silva (SENAI) SENAI - Serviço Nacional de Aprendizagem Industrial DAE - Divisão de Assistência às Empresas Departamento Regional do Espírito Santo Av. Nossa Senhora da Penha, 2053 Bairro Santa Luíza - Vitória - ES. CEP 29045-401 - Caixa Postal 683 Telefone: (27) 3325-0255 Telefax: (27) 3227-9017 CST - Companhia Siderúrgica de Tubarão AHD - Divisão de Desenvolvimento de Recursos Humanos AV. Brigadeiro Eduardo Gomes, n° 930, Jardim Limoeiro - Serra - ES. CEP 29163-970 Telefone: (27) 3348-1333 Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 5 Qualquer segmento pode ser escolhido para unidade de comprimento. Porém se cada pessoa pudesse escolher livremente uma unidade de comprimento para medir um segmento AB , este apresentaria diferentes medidas, dependendo da unidade usada. Assim, existe a necessidade de se escolher uma unidade padrão de comprimento, isto é, uma unidade de comprimento que seja conhecida e aceita por todas as pessoas. Medidas de Comprimento A unidade padrão de comprimento é o metro. O metro é o comprimento assinalado sobre uma barra metálica depositada no Museu Internacional de Pesos e Medidas, na cidade de Sévres (França). O metro com seus múltiplos forma o Sistema Métrico Decimal que é apresentado no seguinte quadro: MÚLTIPLOS SUBMÚLTIPLOS Unidade Símbolo Valor Quilômetro KM 1.000 m Hectômetro hm 100 m Decâmetro dam 10 m Metro m 1 m Decímetro dm 0,1 m Centímetro cm 0,01 Milímetro mm 0,001 m Leitura de Comprimentos Cada unidade de comprimento é igual a 10 vezes a unidade imediatamente inferior: 1Km = 10 hm 1hm = 10 dam 1 dam = 10 m 1m = 10 dm 1dm = 10 cm 1 cm = 10mm Em consequência, cada unidade de comprimento é igual a 0,1 da unidade imediatamente superior: 1hm = 0,1 km 1dam = 0,1 hm 1m = 0,1 dam 1dm = 0,1 m 1 cm = 0,1 dm 1mm = 0,1 cm Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 6 Companhia Siderúrgica de Tubarão A leitura e a escrita de um número que exprime uma medida de comprimento (número seguido do nome da unidade) é feita de modo idêntico aos números decimais. Veja como você deve ler alguns comprimentos: 1 décimo de metro ou 0,1m 1 decímetro vinte e cinco centésimos de metro ou 0,25m vinte e cinco centímetros seis inteiros e trinta e sete centésimos 6,37m de metro ou 63,7 decímetros Mudanças de Unidade Para passar de uma unidade para outra imediatamente inferior, devemos fazer uma multiplicação por 10, ou seja, devemos deslocar a vírgula um algarismo para a direita. EXEMPLOS 3,72 dam = (3,72 x 10)m = 37,2 m 5,89 dam = (5,89 x 10)m = 58,9 m Para passar de uma unidade para outra imediatamente superior, devemos fazer uma divisão por 10, ou seja, devemos deslocar a vírgula de um algarismo para a esquerda. EXEMPLOS 389,2 cm = (389,2 : 10) dm = 38,92 dm 8,75 m = ( 8,75 :10) dam = 0,875 dam Para passar de uma unidade para outra qualquer, basta aplicar sucessivamente uma das regras anteriores. EXEMPLOS a) Km para m 3,584 Km = 35,84 hm = 358,4 dam = 3.584 m b) dm para hm 87,5 dm = 8,75 m = 0,875 dam = 0,0875 hm Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 7 Exercícios - Medidas de Comprimento 1) Escreva a medida mais adequada quando você quer medir: a) O comprimento da sala de aula; b) A distância entre Vitória e Rio de Janeiro; c) A largura de um livro; d) A folga de virabrequim. 2) Escreva as medidas: a) 8 hectômetros e 9 decâmetros; b) 3 metros e 2 milímetros; c) 27 metros e 5 milímetros; d) 1 metro e 17 centímetros; e) 15 decímetros e 1 milímetro. 3) Transforme cada medida apresentada para a unidade indicada: a) 527 m = .............................................. cm b) 0,783 m = .............................................. mm c) 34,5 dam = .............................................. cm d) 0,8 m = .............................................. mm e) 22,03 m = .............................................. dm 4) Reduza para a unidade indicada: a) 5 m = ................................................ dm b) 6 m = ................................................ cm c) 7 m = ................................................ mm d) 9 dm = ................................................ cm e) 12 dm = ................................................ mm f) 18 cm = ................................................ mm g) 0,872 m = ................................................ mm Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 10 Companhia Siderúrgica de Tubarão Medidas de Superfície A medida de uma superfície chama-se área. O metro quadrado (m2) é a unidade fundamental das medidas de superfície. Dividimos o retângulo à esquerda em quadrados de 1 metro de lado. 1m2 1m 3m 1m 1m 5m 1m 1m 1m 1m 1m Então o retângulo tem 15m2 de área. Conclusão: Podemos encontrar a área do retângulo multiplicando a medida da base pela medida da altura. Múltiplos e Submúltiplos do m2 Para medir superfícies, além do metro quadrado, podemos usar ainda os: 1000000 m2 = 1 km2 (quilômetro quadrado) • Múltiplos 10000 m2 = 1 hm2 (hectômetro quadrado) 100 m2 = 1 dam2 (decâmetro quadrado) 1 m2 = 100 dm2 (decímetro quadrado) • Submúltiplos 1 m2 = 10000 cm2 (centímetro quadrado) 1 m2 = 1000000 mm2 (milímetro quadrado) Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 11 Mudanças de Unidade Cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior. 2 casas 2 casas 2 casas 2 casas 2 casas 2 casas km 2 hm 2 dam 2 m 2 dm2 cm2 mm2 A mudança de unidade se faz com o deslocamento da vírgula a direita ou para a esquerda. EXEMPLOS: a) Transformar 73,58 dam2 em metros quadrado: 73,58 dam2 = (73,58 x 100) m2 = 7358 m2 Na prática, deslocamos a vírgula duas casas para a direita. b) Transformar 0,54623 hm2 em metros quadrados: 0,54623 hm2 = (0,54623 x 10000) m2 = 5462,3 m2 Na prática, deslocamos a vírgula quatro casas para a direita. c) Transformar 18,57 dm2 em metros quadrados: 18,57 dm2 = (18,57 : 100) m2 = 0,1857 m2 Na prática, deslocamos a vírgula duas casas para a esquerda. Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 12 Companhia Siderúrgica de Tubarão Exercícios - Medidas de Superfície 1) Transforme em m2: a) 7 km2 e) 87,20 dm2 b) 8 dam2 f) 44,93 cm2 c) 6,41 km2 g) 0,0095 hm2 d) 5,3 hm2 h) 524,16 cm2 2) Faça a conversão de: a) 15 m2 em dm2 e) 0,07 dm2 em cm2 b) 30 hm2 em km2 f) 581,4 m2 em dm2 c) 0,83 cm2 em mm2 g) 739 dam2 em km2 d) 3200 mm2 em cm2 h) 0,65 m2 em hm2 Tabela para facilitar os exercícios: MÚLTIPLOS SUBMÚLTIPLOS Km2 hm2 dam2 m2 dm2 cm2 mm2 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 15 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 16 Companhia Siderúrgica de Tubarão Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 17 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 20 Companhia Siderúrgica de Tubarão Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 21 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 22 Companhia Siderúrgica de Tubarão Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 25 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 26 Companhia Siderúrgica de Tubarão Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 27 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 30 Companhia Siderúrgica de Tubarão Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 31 Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 32 Companhia Siderúrgica de Tubarão Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 35 originando-se o material “Alclad”. Espírito Santo __________________________________________________________________________________________________ __________________________________________________________________________________________________ CST 36 Companhia Siderúrgica de Tubarão Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 37 Sistema Métrico Decimal - Medidas de Massa Introdução O que, de modo comum, chamamos peso de um corpo é, na realidade matemática e física, a massa do corpo. Sabemos que o peso de um corpo varia conforme o local em que se encontra esse corpo (a ação da gravidade varia de local para local da Terra), enquanto a massa do corpo é constante. Vamos estudar, portanto, as medidas de massa. O Quilograma e o Grama A unidade fundamental (e legal) para as medidas de massa dos corpos é o quilograma, que se abrevia kg. O quilograma é a massa aproximada de 1 dm3 de água destilada à temperatura de 4ºC. Porém, de modo prático, usamos como unidade principal o grama (g), que é a milésima parte do quilograma. Vejamos a tabela de múltiplos e submúltiplos do grama. Múltiplos u.f. Submúltiplos quilograma kg 1000g hectograma hg 100g decagrama dag 10g grama g 1g decigrama dg 0,1g centigrama cg 0,01g miligrama mg 0,001g 10 10 10 10 10 10 kg hg dag g dg cg mg Cada unidade de massa é 10 vezes maior que a unidade imediatamente inferior, isto é, as sucessivas unidades de massa variam de 10 em 10. Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 40 Companhia Siderúrgica de Tubarão 3) Transformar para a unidade imediatamente superior: a) 50 g b) 6.500 kg c) 38,5 dg d) 285 hg e) 120 mg 4) Transformar em kg. a) 1,5 t b) 28 hg c) 9.600 g d) 42 t e) 12.500 g 5) Transformar em g: a) 3,2 kg b) 2 t c) 1 4 kg d) 1.300 mg e) 61 quilates f) 1 2 kg g) 4,5 hg h) 24 quilates i) 0,75 kg j) 142,5 cg 6) Resolver os seguintes problemas: a) Um carro tanque, inteiramente cheio, transporte 12 m3 de água pura. Qual é o peso (massa) da água transportada ? b) As medidas de um reservatório são 7 m; 5 m e 4 m. Estando inteiramente cheio esse reservatório com água pura, qual é o peso (massa) dessa água ? Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 41 c) Uma caixa cúbica tem 0,5 m de aresta (internamente). Que peso (massa) máximo de água pura pode conter ? d) Um reservatório tem uma capacidade para 20.000 λ. Qual o peso (massa) de água pura que esse reservatório pode conter quando inteiramente cheio ? e) A massa de um diamante é 324,5 quilates. Qual o peso (massa) desse diamante em g ? Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 42 Companhia Siderúrgica de Tubarão Medidas não decimais Medidas Complexas Existem medidas que podem ser escritas em várias unidades, como: 5 horas 20 minutos 10 segundos. 22 graus 30 minutos. 2 anos 3 meses 20 dias. Essas medidas são chamadas medidas complexas e, entre elas, estudaremos as medidas de tempo (as medidas de ângulo serão estudadas na 7ª série). Medidas de Tempo No quadro abaixo, menos as unidades de medida de tempo. Unidades Símbolo Valores ano comercial mês comercial dia hora minuto segundo a me d h min s 360 dias 30 dias 24 horas 60 minutos 60 segundos - Observamos que as unidades de tempo não têm, entre si, relações decimais. Além das unidades constantes do quadro, são também usuais as unidades: Semana (7 d); Quinzena (15 d); Bimestre (2 me); Trimestre (3 me); Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 45 Exercícios: 1) Observando os exemplos calcule: a) 1h 20min 10s + 2h 10min 40s = ........... h ............ min ............. s b) 2h 40min 50s + 1h 35min 30s = ......... h ......... min ........ s = ........ h ........ min ......... s c) 3d 18h + 2d 12h = ........... d ........... h = ............. d ............ h d) 2me 20d + 3me 15d = ............. me .............. d = ............... me ............... d e) 1a 9me 25d + 1a 6me 15d = ........... a .......... me ......... d = ......... a ......... e ......... d. 2) Observando os exemplos calcule: a) 3h 40min 50s - 1h 10min 20s = ............ h ............ min ............ s b) 5h 25min 10s - 2h 14min 50s = ............ h ............ min ............ s c) 3d - 1d 20h = ................. d ................... h d) 4h - 1h 30min = ........................ h ...................... min e) 6 me - 2me 20d = .................... me ..................... d f) 4 a 8m 10d - 2a 6m 20d = ................. a .................. me ............... d 3. Multiplicação e divisão de medida complexa por número inteiro 1º exemplo: (1h 20min 18s) x 4 2º exemplo: (25h 27min 20s) : 2 1h 20min 18s 25h 27min 20s 2 x 4 05 60min + 60s 12h 43min 40s 4h 80min 72s fazendo a 1s 87min 80s 4h 81min 12s transformação 07 00 5h 21min 1min Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 46 Companhia Siderúrgica de Tubarão Exercícios: 1) Observando os exemplos dados, calcule: a) (2h 10min 20s) x 2 = ............... h .............. min ............... s b) (10h 35min 50s) : 5 = ............... h .............. min .............. s c) (1h 25min 30s) x 3 = ............ h ........... min ........... s = ........... h .......... min .......... s d) (4h 15min) : 3 = ............ h ............. min e) (1me 20d) x 2 = ............. me ............ d = ............ me ............. d f) (3 e 5me 10d) : 2 = .............. a ............ me ............... d Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 47 Conceito - Finalidade do controle medição - Método – Instrumento e Operador - Laboratório de Metrologia Metrologia A metrologia aplica-se a todas as grandezas determinadas e, em particular, às dimensões lineares e angulares das peças mecânicas. Nenhum processo de usinagem permite que se obtenha rigorosamente uma dimensão prefixada. Por essa razão, é necessário conhecer a grandeza do erro tolerável, antes de se escolherem os meios de fabricação e controle convenientes. Finalidade do Controle O controle não tem por fim somente reter ou rejeitar os produtos fabricados fora das normas; destina-se, antes, a orientar a fabricação, evitando erros. Representa, por conseguinte, um fator importante na redução das despesas gerais e no acréscimo da produtividade. Um controle eficaz deve ser total, isto é, deve ser exercido em todos os estágios de transformação da matéria, integrando-se nas operações depois de cada fase de usinagem. Todas as operações de controle dimensional são realizadas por meio de aparelhos e instrumentos; devem-se, portanto, controlar não somente as peças fabricadas, mas também os aparelhos e instrumentos verificadores: • de desgastes, nos verificadores com dimensões fixas; • de regulagem, nos verificadores com dimensões variáveis; Isto se aplica também às ferramentas, aos acessórios e às máquinas-ferramentas utilizadas na fabricação. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 50 Companhia Siderúrgica de Tubarão Operador O operador é, talvez, dos três, o elemento mais importante. É ele a parte inteligente na apreciação das medidas. De sua habilidade depende, em grande parte, a precisão conseguida. Um bom operador, servindo-se de instrumentos relativamente débeis, consegue melhores resultados do que um operador inábil com excelentes instrumentos. Deve, pois, o operador, conhecer perfeitamente os instrumentos que utiliza, ter iniciativa para adaptar às circunstâncias o método mais aconselhável e possuir conhecimentos suficientes para interpretar os resultados encontrados. Laboratório de Metrologia Nos casos de medição de peças muito precisas, torna-se necessário uma climatização do local; esse local deve satisfazer às seguintes exigências: 1 - temperatura constante; 2 - grau higrométrico correto; 3 - ausência de vibrações e oscilações; 4 - espaço suficiente; 5 - boa iluminação e limpeza. 1 - Temperatura, Umidade, Vibração e Espaço A Conferência Internacional do Ex-Comite I.S.A. fixou em 20ºC a temperatura de aferição dos instrumentos destinados a verificar as dimensões ou formas. Em conseqüência, o laboratório deverá ser mantido dentro dessa temperatura, sendo tolerável à variação de mais ou menos 1ºC; para isso, faz-se necessária a instalação de reguladores automáticos. A umidade relativa do ar não deverá ultrapassar 55%; é aconselhável instalar um higrostato (aparelho regulador de umidade); na falta deste, usa-se o CLORETO DE CÁLCIO INDUSTRIAL, cuja propriedade química retira cerca de 15% da umidade relativa do ar. Para se protegerem as máquinas e aparelhos contra vibração do prédio, forra-se a mesa com tapete de borracha, com espessura de 15 a 20mm, e sobre este se coloca chapa de aço, de 6mm. No laboratório, o espaço deve ser suficiente para acomodar em armários todos os instrumentos e, ainda, proporcionar bem-estar a todos que nele trabalham. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 51 2 - Iluminação e Limpeza A iluminação deve ser uniforme, constante e disposta de maneira que evite ofuscamento. Nenhum dispositivo de precisão deve estar exposto ao pó, para que não haja desgastes e para que as partes óticas não fiquem prejudicadas por constantes limpezas. O local de trabalho deverá ser o mais limpo e organizado possível, evitando-se que as peças fiquem umas sobre as outras. Normas Gerais de Medição Medição é uma operação simples, porém só poderá ser bem efetuada por aqueles que se preparam para tal fim. O aprendizado de medição deverá ser acompanhado por um treinamento, quando o aluno será orientado segundo as normas gerais de medição. Normas gerais de medição: 1 - Tranqüilidade. 2 - Limpeza. 3 - Cuidado. 4 - Paciência. 5 - Senso de responsabilidade. 6 - Sensibilidade. 7 - Finalidade da posição medida. 8 - Instrumento adequado. 9 - Domínio sobre o instrumento. Recomendações Os instrumentos de medição são utilizados para determinar grandezas. A grandeza pode ser determinada por comparação e por leitura em escala ou régua graduada. É dever de todos os profissionais zelar pelo bom estado dos instrumentos de medição, mantendo-se assim por maior tempo sua real precisão. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 52 Companhia Siderúrgica de Tubarão Evite: 1 - choques, queda, arranhões, oxidação e sujeita; 2 - misturar instrumentos; 3 - cargas excessivas no uso, medir provocando atrito entre a peça e o instrumento; 4 - medir peças cuja temperatura, quer pela usinagem quer por exposição a uma fonte de calor, esteja fora da temperatura de referência; 5 - medir peças sem importância com instrumentos caros. Cuidados: 1 - USE proteção de madeira, borracha ou feltro, para apoiar os instrumentos. 2 - DEIXE a peça adquirir a temperatura ambiente, antes de tocá-la com o instrumento de medição. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 55 Múltiplos e Submúltiplos do Metro Terâmetro - Tm - 1012 - 1 000 000 000 000m Gigâmetro - Gm - 109 - 1 000 000 000m Megâmetro - Mm - 106 - 1 000 000m Quilômetro - Km - 103 - 1 000m Hectômetro - Hm - 102 - 100m Decâmetro - Dam - 101 - 10m METRO (unidade) - m - 1m decímetro - dm - 10-1 - 0,1m centímetro - cm - 10-2 - 0,01m milímetro - mm - 10-3 - 0,001m micrômetro - µm - 10-6 - 0,000 001m nanômetro - nm - 10-9 - 0,000 000 001m picômetro - pm - 10-12 - 0,000 000 000 001m femtômetro - fm - 10-15 - 0,000 000 000 000 001m attômetro - am - 10-18 - 0,000 000 000 000 000 001m Unidades Não Oficiais Sistemas Inglês e Americano Os países anglo-saxãos utilizam um sistema de medidas baseado na farda imperial (yard) e seus derivados não decimais, em particular a polegada inglesa (inch), equivalente a 25,399 956mm à temperatura de 0ºC. Os americanos adotam a polegada milesimal, cujo valor foi fixado em 25,400 050mm à temperatura de 16 2/3ºC. Em razão da influência anglo-saxônica na fabricação mecânica, emprega-se freqüentemente, para as medidas industriais, à temperatura de 20ºC, a polegada de 25,4mm. Observação: Muito embora a polegada extinguiu-se, na Inglaterra, em 1975, será aplicada em nosso curso, em virtude do grande número de máquinas e aparelhos utilizados pelas indústrias no Brasil que obedecem a esses sistemas. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 56 Companhia Siderúrgica de Tubarão Unidades de Comprimento m µm mm cm dm km 1 m = 1 106 103 102 10 10-3 1 µm = 10-6 1 10-3 10-4 10-5 10-9 1 mm = 10-3 103 1 10-1 10-2 10-6 1 cm = 10-2 104 10 1 10-1 10-5 1 dm = 10-1 105 102 10 1 10-4 1 km = 103 109 106 10-5 104 1 Unidades de Comprimento (Cont.) mm µm nm Å pm mÅ 1 mm = 1 103 106 107 109 1010 1 µm = 10-3 1 103 104 106 107 1 nm = 10-6 10-3 1 10-1 103 104 1 Å = 10-7 10-4 10 1 102 103 1 pm = 10-9 10-6 10-3 10 1 10 1 mÅ = 10-10 10-7 10-6 10-5 10-1 1 Å = Ångström | 1 mÅ = 1 UX (Unidade X ou Röntgen) Outras Grandezas Área Área ou superfície é o produto de dois comprimentos. O metro quadrado é a unidade SI da área, e o seu símbolo é m2. Unidades de Área m2 µm2 mm2 cm2 dm2 km2 1 m2 = 1 1012 106 104 102 10-6 1 µm2 = 10-12 1 10-2 10-8 10-10 10-18 1 mm2 = 10-6 106 1 10-2 10-4 10-12 1 cm2 = 10-4 108 102 1 10-2 10-10 1 dm2 = 10-2 1010 104 102 1 10-8 1 km2 = 106 1018 1012 1010 108 1 Volume Volume é produto de três comrprimentos (comprimento, largura e altura). O metro cúbico é a unidade SI da volume, e o seu símbolo é m3. Unidades de Volume m3 mm3 cm3 dm3 1) km3 1 m3 = 1 109 106 103 109 1 mm3 = 10-9 1 10-3 10-6 10-18 1 cm3 = 10-6 103 1 10-3 10-15 1 dm3 = 10-3 10-6 103 1 10-12 1 km3 = 109 1018 1015 1012 1 1) 1 dm3 = 1 l (Litro) Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 57 Massa O kilograma é a unidade SI de massa, com o símbolo kg. O correto em português é escrever quilograma, entretanto trataremos a unidade de massa como kilograma por coerência gráfica (kg). O kilograma tem as seguintes características ímpares: a) Única unidade de base com prefixo (kilo = mil) b) Única unidade de base definida por um artefato escolhido em 1889. c) Praticamente sua definição não sofreu nenhuma modificação ou revisão. O padrão primário da unidade de massa é o protótipo internacional do kilograma do BIPM. Este protótipo é um cilindro de platina (90%) - irídio (10%), com diâmetro e atura iguais a 39mm. Tamanho aproximado do kilograma protótipo de platina-irídio Unidades de Massa kg mg g dt t = Mg 1 kg = 1 106 103 10-2 10-3 1 mg = 10-6 1 10-3 10-8 10-9 1 g = 10-3 103 1 10-5 10-6 1 dt = 102 108 105 1 10-1 1 t = 1 Mg = 103 109 106 10 1 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 60 Companhia Siderúrgica de Tubarão Rotação A velocidade de rotação é dada em RPM (número de rotações por minuto). Comparação de Unid. Anglo-Americana com as Métr. - Unid. de Compr. pol pé jarda mm m km 1 pol = 1 0,08333 0,02778 25,4 0,0254 - 1 pé = 12 1 0,3333 304,8 0,3048 - 1 jarda = 36 3 1 914,4 0,9144 - 1 mm = 0,03937 3281.10-6 1094.10-6 1 0,001 10-6 1 m = 39,37 3,281 1,094 1000 1 0,001 1 km = 39370 3281 1094 106 1000 1 Unidades de Área pol2 pé2 jarda2 cm2 dm2 m2 1 pol2 = 1 - - 6,452 0,06452 - 1 pé2 = 144 1 0,1111 929 9,29 0,0929 1 jarda2 = 1296 9 1 8361 83,61 0,8361 1 cm2 = 0,155 - - 1 0,01 0,0001 1 dm2 = 15,5 0,1076 0,01196 100 1 0,01 1 m2 = 1550 10,76 1,196 10000 100 1 Unidades de Volume pol3 pé3 jarda3 cm3 dm3 m3 1 pol3 = 1 - - 16,39 0,01639 - 1 pé3 = 1728 1 0,037 28320 28,32 0,0283 1 jarda3 = 46656 27 1 765400 - - 1 cm3 = 0,06102 3531.10-8 1,31.10-6 1 0,001 10-6 1 dm3 = 61,02 0,03531 0,00131 1000 1 0,001 1 m3 = 61023 3531 130,7 106 1000 1 Unidades de Massa dracma oz lb g kg Mg 1 dracma = 1 0,0625 0,003906 1,772 0,00177 - 1 onça = 16 1 0,0625 28,35 0,02835 - 1 lb = 256 16 1 453,6 0,4536 - 1 g = 0,5644 0,03527 0,002205 1 0,001 10-6 1 kg = 564,4 35,27 2,205 1000 1 0,001 1 Mg = 564,4.103 35270 2205 106 1000 1 Outras Unidades 1 milha inglesa = 1609 m 1 milha marítima internacional = 1852 m 1 milha geográfica = 7420 m 1 légua brasileira (3000 braças) = 6600 m 1 milha brasileira (1000 braças) = 2200 m 1 galão imperial (Ingl.) = 4,546 dm3 1 galão Americano (EUA) = 3,785 dm3 1 braça (2 varas) = 2,20 m 1 vara (5 palmos) = 1,10 m 1 passo geométrico (5 pés) = 1,65 m 1 alqueire paulista = 24200 m2 1 alqueire mineiro = 48400 m2 1 short ton (US) = 0,9072 Mg 1 long ton (GB, US) = 1,0160 Mg 1 Btu/pé3 = 9,547 kcal/m3 = 39 964 N m/m3 1 Btu/lb = 0,556 kcal/kg = 2 327 N m/kg 1 lb/pé2 = 4,882 kp/m2 = 47,8924 N/m2 1 lb/pol2 (= 1 psi) = 0,0703 kp/cm2 = 0,6896 N/cm2 Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 61 MEDIÇÃO DE VAZÃO 1 - INTRODUÇÃO Na maioria das operações realizadas nos processos industriais é muito importante efetuar a medição e o controle da quantidade de fluxo de líquidos, gases e até sólidos granulados, não só para fins contábeis, como também para a verificação do rendimento do processo. Assim, estão disponíveis no mercado diversas tecnologias de medição de vazão cada uma tendo sua aplicação mais adequada conforme as condições impostas pelo processo. Neste capítulo abordaremos algumas destas tecnologias, suas aplicações, e os princípios físicos envolvidos, bem como os testes, calibração e suas interligações elétricas em forma de malhas de medição, registro, indicação e controle. 2 - DEFINIÇÃO Vazão pode ser definida como sendo a quantidade volumétrica, mássica ou gravitacional de um fluido que passa através de uma seção de uma tubulação ou canal por unidade de tempo. Observação: A vazão também pode ser obtida pelo resultado da multiplicação da área seccional pela média da velocidade do fluido. 2.1 - Vazão Volumétrica É definida como sendo a quantidade em volume que escoa através de uma certa seção em um intervalo de tempo considerado. É representado pela letra Q e expressa pela seguinte equação: Q = Vt Onde: V = volume t = tempo 2.1.1 - Unidades de Vazão Volumétricas As unidades de vazão volumétricas mais utilizadas são: m3/s, m3/h, l/h, l/min GPM, Nm3/h e SCFH. Na medição de vazão volumétrica é importante referenciar as condições básicas de pressão e temperatura, principalmente para gases e vapor pois o volume de uma substância depende da pressão e temperatura a que está submetido. Espírito Santo _________________________________________________________________________________________________ _________________________________________________________________________________________________ CST 62 Companhia Siderúrgica de Tubarão 2.2 - Vazão Mássica É definida como sendo a quantidade em massa de um fluido que atravessa a seção de uma tubulação por unidade de tempo. É representada pela letra Qm e expressa pela seguinte equação: Qm = m t Onde: m = massa t = tempo 2.2.1 - Unidades de Vazão Mássica As unidades de vazão mássica mais utilizadas são: kg/s, kg/h, T/h e Lb/h. 2.3 - Relação Entre Unidades A relação entre as unidades de medição de vazão volumétrica e mássica pode ser obtida pela seguinte expressão: Qm = ρ . Qv Onde: ρ = massa específica 2.4 - Vazão Gravitacional É a quantidade em peso que passa por uma certa seção por unidade de tempo. É representada pela letra Qρ e expressa pela seguinte equação: Qρ = Wt Onde: W = peso 2.5 - Unidade Gravitacional As unidades de vazão gravitacional mais utilizadas são: kgf/h e lbf/h. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 65 Medição de profundidade de rasgo Fig.7 Medição de comprimento com face interna de referência. Fig.8 Medição de comprimento com apoio em um plano Fig.9 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 66 Companhia Siderúrgica de Tubarão Características da boa Régua Graduada 1 - Ser, de preferência, de aço inoxidável. 2 - Ter graduação uniforme. 3 - Apresentar traços bem finos, profundos e salientados em preto. Conservação 1 - Evitar quedas e contato com ferramentas de trabalho. 2 - Evitar flexioná-la ou torcê-la, para que não se empene ou quebre. 3 - Limpe-o após o uso, para remover o suor e a sujeira. 4 - Aplique-lhe ligeira camada de óleo fino, antes de guardá-la. Graduações da Escala - Sistema Inglês Ordinário ( “ ) polegada - 1” = uma polegada Representações (IN) polegada - 1 IN = uma polegada da polegada (INCH) palavra inglesa que significa polegada 0 1” Intervalo referente a 1”(ampliada) Fig.10 As graduações da escala são feitas dividindo-se a polegada em 2, 4, 8 e 16 partes iguais, existindo em alguns casos escalas com 32 divisões (figuras 11, 12, 13, 14 e 15). 0 1 2 1” Dividindo 1” por 2, teremos: 1:2 = 1 x 1 2 = 1 2 Fig.11 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 67 0 1 4 1 2 3 4 1” Dividindo 1” por 4, teremos: 1:4 = 1 x 1 4 = 1 4 Fig.12 A distância entre traços = 1 4 . Somado as frações, teremos: 1 4 + 1 4 = / / 2 4 2 2 ( ) ( ) = 1 2 ; 1 4 + 1 4 + 1 4 = 3 4 Observação: Operando com frações ordinárias, sempre que o resultado é numerador par, devemos simplificar a fração. Exemplo: 1 4 + 1 4 = 2 4 , Simplificando, teremos: / / 2 4 2 2 ( ) ( ) = 1 2 0 1 2 1” 1 8 1 4 3 8 5 8 3 4 7 8 Dividindo 1” por 8, teremos: 1:8 = 1 x 1 8 = 1 8 Fig.13 A distância entre traços = 1 8 . Somando as frações, teremos: 1 8 + 1 8 = / / 2 8 2 2 ( ) ( ) = 1 4 ; 1 8 + 1 8 + 1 8 = 3 8 1 8 + 1 8 + 1 8 + 1 8 = / / 2 8 2 2 ( ) ( ) = / / 2 4 2 2 ( ) ( ) = 1 2 Prosseguindo a soma, encontraremos o valor de cada traço (fig.13). Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 70 Companhia Siderúrgica de Tubarão Exercício de Leitura (Régua Graduada) RESPOSTAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Obs.: Reduza todas as frações à forma mais simples. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 71 RESPOSTAS 15 16 17 18 19 20 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 72 Companhia Siderúrgica de Tubarão Paquímetro - Princípio do Vernier - Tipos e Usos - Erros de Medição e Leitura Paquímetro Utilizado para a medição de peças, quando a quantidade não justifica um instrumental específico e a precisão requerida não desce a menos de 0,02mm, ′′1 128 É um instrumento finamente acabado, com as superfícies planas e polidas. O cursor é ajustado à régua, de modo que permita a sua livre movimentação com um mínimo de folga. Geralmente é construído de aço inoxidável, e suas graduações referem-se a 20ºC. A escala é graduada em milímetro e polegadas, podendo a polegada ser fracionária ou milesimal. O cursor é provido de uma escala, chamada nônio ou vernier, que se desloca em frente às escalas da régua e indica o valor da dimensão tomada. Fig.1 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 75 Observação: O cálculo de aproximação obtido pela divisão do menor valor da escala principal pelo número de divisões do nônio, é aplicado a todo e qualquer instrumento de medição possuidor de nônio, tais como: paquímetro, micrômetro, goniômetro, etc. ERROS DE LEITURA - São causados por dois fatores: a) paralaxe; b) pressão de medição. Paralaxe O cursor onde é gravado o nônio, por razões técnicas, tem uma espessura mínima a. Assim, os traços do nônio TN são mais elevados que os traços da régua TM (fig.9) Fig.9 Colocando-se o paquímetro perpendicularmente a nossa vista e estando superpostos os traços TN e TM, cada olho projeta o traço TN em posições opostas (fig.10) Fig.10 A maioria das pessoas possuem maior acuidade visual em um dos olhos, o que provoca erro de leitura. Recomenda-se a leitura feita com um só olho, apesar das dificuldades em encontrar-se a posição certa. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 76 Companhia Siderúrgica de Tubarão Pressão de Medição É a pressão necessária para se vencer o atrito do cursor sobre a régua, mais a pressão de contato com a peça por medir. Em virtude do jogo do cursor sobre a régua, que e compensado pela mola F (fig.11), a pressão pode resultar numa inclinação do cursor em relação à perpendicular à régua (fig.12). Por outro lado, um cursor muito duro elimina completamente a sensibilidade do operador, o que pode ocasionar grandes erros. Deve o operador regular a mola, adaptando o instrumento à sua mão. Fig.11 Fig.12 Erros de Medição Estão classificados em erros de influências objetivas e de influências subjetivas. a) DE INFLUÊNCIAS OBJETIVAS: São aqueles motivados pelo instrumento • erros de planidade; • erros de paralelismo; • erros da divisão da régua; • erros da divisão do nônio; • erros da colocação em zero. b) DE INFLUÊNCIAS SUBJETIVAS: São aqueles causados pelo operador (erros de leitura). Observação: Os fabricantes de instrumentos de medição fornecem tabelas de erros admissíveis, obedecendo às normas existentes, de acordo com a aproximação do instrumento Dos diversos tipos de paquímetros existentes, mostramos alguns exemplos (figuras 13, 14, 15, 16, 17, 18, 19 e 20): Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 77 Medição de profundidade Fig.15 Paquímetro de profundidade Fig.16 Medição externa Fig.14 Medição interna Fig.13 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 80 Companhia Siderúrgica de Tubarão 3º) Passo: FAÇA A LIMPEZA DOS ENCOSTOS. Observação: Utilize uma folha de papel limpo. a. Desloque o cursor do paquímetro. b. Coloque a folha de papel entre os encostos. c. Feche o paquímetro até que a folha de papel fique presa entre os encostos. d. Desloque a folha de papel para baixo. 4º) Passo: FAÇA A PRIMEIRA MEDIDA. a. Desloque o cursor, até que o encosto apresente uma abertura maior que a primeira medida por fazer no padrão. b. Encoste o centro do encosto fixo em uma das extremidades do diâmetro por medir (fig.4). Fig.4 c. Feche o paquímetro suavemente, até que o encosto móvel toque a outra extremidade do diâmetro. d. Exerça uma pressão suficiente para manter a peça ligeiramente presa entre os encostos. e. Posicione os encostos do paquímetro na peça, de maneira que estejam no plano de medição Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 81 f. Utilize a mão esquerda, para melhor sentir o plano de medição (fig.5). Fig.5 g. Faça a leitura da medida. h. Abra o paquímetro e retire-o da peça, sem que os encostos a toquem. i. Registre a medida feita na folha de tarefa, no local indicado, de acordo com o número do padrão. 5º) Passo: COMPLETE A MEDIÇÃO DOS DEMAIS DIÂMETROS. a. Repita todos os subpassos do 4º Passo. 6º) Passo: FAÇA A MEDIÇÃO DOS DEMAIS PADRÕES. a. Troque o padrão por outro de número diferente. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 82 Companhia Siderúrgica de Tubarão Paquímetro - Sistema Inglês Ordinário Para efetuarmos leitura de medidas em um paquímetro do sistema inglês ordinário, faz-se necessário conhecermos bem todos os valores dos traços da escala (fig.1). NÔNIO 0 8 ′′1 16 ′′3 16 ′′5 16 ′′7 16 ′′9 16 11 16 ′′ 13 16 ′′ 15 16 ′′ 11 16 ′′ 13 16 ′′ ′′18 ′′1 4 ′′3 8 ′′1 2 ′′5 8 ′′3 4 ′′7 8 1 11 8 ′′ 11 4 ′′ 0 Escala Fixa Valor de cada traço da escala fixa = ′′1 16 Fig.1 Assim sendo, se deslocarmos o cursor do paquímetro até que o traço zero do nônio coincida com o primeiro traço da escala fixa, a leitura da medida será 1/16" (fig.2), no segundo traço, 1/8" (fig.3), no décimo traço, 5/8" (fig.4). 0 0 ′′1 16 ′′1 8 0 0 Fig.2 Fig.3 0 0 Fig.4 Uso do Vernier (Nônio) ′′5 8 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 85 Processo para a Leitura de Medidas 1º) Exemplo: Ler a medida da figura 12. 0 0 Fig.12 Multiplica-se o número de traços da escala fixa ultrapassados pelo zero do nônio, pelo último algarismo do denominador da concordância do nônio. O resultado da multiplicação soma-se com o numerador, repetindo-se o denominador da concordância . + 6 1 128 = 49 128 ′′ x 2º) Exemplo: Ler a medida da figura 13. 0 0 1 Fig.13 + 9 1 64 = 37 64 ′′ x Número de traços da escala fixa ultrapassados pelo zero do nônio Concordância do nônio. Leitura da medida. = ′′49 128 49 128 ′′ Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 86 Companhia Siderúrgica de Tubarão 3º) Exemplo: Ler a medida da figura 14. 0 0 1 Fig.14 + 6 1 32 = 13 32 ′′ x Número de traços da escala fixa ultrapassados pelo zero do nônio Concordância do nônio. Leitura da medida. 4º) Exemplo: Ler a medida da figura 15. 0 8 0 1” 2” Fig.15 Observação: Em medidas como as do exemplo da figura 15, abandonamos a parte inteira e fazemos a contagem dos traços, como se iniciássemos a operação. Ao final da aplicação do processo, incluímos a parte inteira antes da fração encontrada. + 4 7 128 = 39 128 ′′ → 139 128 ′′ x Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 87 Exercício de Leitura (Paquímetro, Sistema Inglês Ordinário) 1 5 9 13 2 6 10 14 3 7 11 4 8 12 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 90 Compamhia Siderúrgica de Tubarão Uso do Vernier (Nônio) De acordo com a procedência do paquímetro e o seu tipo, observamos diferentes aproximações, isto é, o nônio com número de divisões diferentes: 10, 20 e 50 divisões (fig.6). Escala Fixa Fig.6 NÔNIO Cálculo de Aproximação a = 1 50 mm a = 0,02mm e = 1 mm n = 50 divisões Fig.7 Cada divisão do nônio é menor 0,02mm do que cada divisão da escala (fig.7). Se deslocarmos o cursor do paquímetro até que o primeiro traço do nônio coincida com o da escala, a medida será 0,02mm (fig.8), o segundo traço 0,04mm (fig.9), o terceiro traço 0,06mm (fig.10), o decimo sexto 0,32mm (fig.11). Fig.8 Fig.9 Fig.10 Fig.11 ESCALA NÔNIO a = e n Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 91 Leitura de Medidas Conta-se o número de traços da escala fixa ultrapassados pelo zero do nônio (10mm) e, a seguir, faz-se a leitura da concordância do nônio (0,08mm). A medida será 10,08mm (fig.12). Fig.12 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 92 Companhia Siderúrgica de Tubarão Exercício - Leitura do Paquímetro (milímetro) 1 4 7 10 2 5 8 11 3 6 9 12 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 95 Medição de Diâmetros Externos INSTRUMENTO: APROXIMAÇÃO DO INSTRUMENTO: EXAMINANDO: Cilindro-padrão. PADRÃO - Nº 1 PADRÃO - Nº 2 PADRÃO - Nº 3 PADRÃO - Nº 4 MEDIDAS MEDIDAS MEDIDAS MEDIDAS ORD. LEITURA UNID ORD. LEITURA UNID ORD. LEITURA UNID ORD. LEITURA UNID 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 6 6 6 6 7 7 7 7 PADRÃO - Nº 5 PADRÃO - Nº 6 PADRÃO - Nº 7 PADRÃO - Nº 8 MEDIDAS MEDIDAS MEDIDAS MEDIDAS ORD. LEITURA UNID ORD. LEITURA UNID ORD. LEITURA UNID ORD. LEITURA UNID 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 6 6 6 6 7 7 7 7 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 96 Companhia Siderúrgica de Tubarão Paquímetro - Sistema Inglês Decimal Graduação da Escala Fixa Para conhecermos o valor de cada divisão da escala fixa, basta dividirmos o comprimento de 1" pelo número de divisões existentes (fig. 1). 1” = 1000 milésimos Fig.1 Conforme mostra a figura 1, no intervalo de 1" temos 40 divisões. Operando a divisão, teremos: 1" : 40 = 0,025" Valor de cada traço da escala = 0,025" (fig. 2). 1,00 40 200 0,025 00 Fig.2 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 97 Se deslocarmos o cursor do paquímetro até que o zero do nônio coincida com o primeiro traço da escala. a leitura será 0,025" (fig.3), no segundo traço 0,050" (fig. 4), no terceiro traço 0,075" (fig.5), no décimo traço 0,250" (fig. 6), e assim sucessivamente. Fig.3 Fig.4 Fig.5 Fig.6 Uso do Vernier (Nônio) 0 primeiro passo será calcular a aproximação do paquímetro. Sabendo-se que o menor valor da escala fixa é 0,025" e que o nônio (fig. 7) possui 25 divisões, teremos: a = 0 025 25 , ,, = 0,001” ESCALA NÔNIO Fig.7 Cada divisão do nônio é menor 0,001" do que duas divisões da escala (fig. 8). Se deslocarmos o cursor do paquímetro até que o primeiro traço do nônio coincida com o da escala, a leitura será 0,001” (fig.9), o Fig.8
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved