Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Caldeiraria Processos De Soldagem E Corte, Notas de estudo de Engenharia Química

Caldeiraria Processos De Soldagem E Corte

Tipologia: Notas de estudo

Antes de 2010
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 26/08/2009

diego-xavier-pereira-https-diegoxp-
diego-xavier-pereira-https-diegoxp- 🇧🇷

4.7

(110)

224 documentos

Pré-visualização parcial do texto

Baixe Caldeiraria Processos De Soldagem E Corte e outras Notas de estudo em PDF para Engenharia Química, somente na Docsity! Espírito Santo CPM - Programa de Certificação de Pessoal de Manutenção Caldeiraria Noções Básicas de Processos de Soldagem e Corte Espírito Santo Noções básicas de Processos de Soldagem e Corte - Caldeiraria © SENAI - ES, 1996 Trabalho realizado em parceria SENAI / CST (Companhia Siderúrgica de Tubarão) Coordenação Geral Supervisão Elaboração Aprovação Editoração Luís Cláudio Magnago Andrade (SENAI) Marcos Drews Morgado Horta (CST) Alberto Farias Gavini Filho (SENAI) Rosalvo Marcos Trazzi (CST) Carlos Roberto Sebastião (SENAI) José Geraldo de Carvalho (CST) José Ramon Martinez Pontes (CST) Tarcilio Deorce da Rocha (CST) Wenceslau de Oliveira (CST) Ricardo José da Silva (SENAI) SENAI - Serviço Nacional de Aprendizagem Industrial DAE - Divisão de Assistência às Empresas Departamento Regional do Espírito Santo Av. Nossa Senhora da Penha, 2053 - Vitória - ES. CEP 29045-401 - Caixa Postal 683 Telefone: (27) 3325-0255 Telefax: (27) 3227-9017 CST - Companhia Siderúrgica de Tubarão AHD - Divisão de Desenvolvimento de Recursos Humanos AV. Brigadeiro Eduardo Gomes, n° 930, Jardim Limoeiro - Serra - ES. CEP 29163-970 Telefone: (27) 3348-1333 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 5 Introdução à Soldagem Introdução O progresso alcançado no campo da soldagem, bem como o desenvolvimento de processos e tecnologias avançadas nos últimos anos, é de tal ordem que todo aquele que não possuir uma mentalidade aberta, capaz de assimilar novas idéias, será ultrapassado e incapacitado para acompanhar o atual ritmo do progresso industrial. Definição da Solda Existem várias definições de solda, segundo diferentes normas. A solda pode ser definida como uma união de peças metálicas, cujas superfícies se tornaram plásticas ou liquefeitas, por ação de calor ou de pressão, ou mesmo de ambos. Poderá ou não ser empregado metal de adição para se executar efetivamente a união. Considerações sobre a solda Na soldagem, os materiais das peças devem ser, se possível, iguais ou, no mínimo, semelhantes em termos de composição. As peças devem ser unidas através de um material de adição, também igual em termos de características, pois os materiais se fundem na região da solda. O metal de adição deve ter uma temperatura de fusão próxima àquela do metal-base ou, então, um pouco abaixo dela, caso contrário, ocorrerá uma deformação plástica significativa. Condições de trabalho De acordo com o orifício, é possível graduar a pressão de trabalho a qual estará em estreita relação com o metal-base (tabela 1) Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 6 Companhia Siderúrgica de Tubsrão As Figuras 1 a 4 apresentam alguns exemplos de aplicação da solda. Solda em perfilados Fig. 1 Solda aplicada em conjuntos matrizes Fig. 2 Solda aplicada em caldeiraria Fig. 3 Solda em componentes de automóveis Fig. 4 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 7 Fontes de calor utilizadas As fontes principais utilizadas na soldagem de metais, como fornecedoras de calor, são: • chama oxiacetilênica; • arco elétrico. As Figuras 5 a 7 apresentam os dois tipos de fontes de calor com suas características. Em especial, utiliza-se amplamente o arco elétrico na fabricação industrial, porque se aplica a quase todos os metais a serem soldados e em todas as espessuras imagináveis. Chama oxiacetilênica Fig. 5 Solda por chama oxiacetilênica Fig. 6 Solda por arco elétrico Fig. 7 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 10 Companhia Siderúrgica de Tubarão Considerações sobre os principais processos de soldagem Solda oxiacetilênica A temperatura alcançada com a chama oxiacetilênica é de 3200ºC na ponta do cone. A chama é o resultado da combustão do oxigênio e do acetileno. Aplicando-se esse processo, pode-se soldar com ou sem material de adição (vareta) (Fig. 10). Solda oxiacetilênica Fig. 10 Solda a arco elétrico A temperatura do arco elétrico atinge valores de até 6000ºC. Seu calor intenso e concentrado solda rapidamente as peças e leva o material de enchimento até o ponto de fusão. Nesse estado, os materiais se misturam e, após o resfriamento, as peças ficam soldadas (Fig. 11). Solda a arco elétrico Fig. 11 Normalmente ela é utilizada em aço carbono, ferro fundido, metais não-ferrosos, ligas, etc. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 11 Soldagem a arco elétrico com proteção gasosa (MIG/MAG) Solda MIG/MAG São processos em que um eletrodo é continuamente alimentado numa solda, com velocidade controlada, enquanto um fluxo contínuo de um gás inerte ou ativo envolve a zona de solda, protegendo-a da contaminação pelo ar atmosférico (Fig. 12). Solda processo MIG/MAG (metal-inerte-gás) Fig. 12 Com o processo MIG/MAG, podem-se soldar todos os materiais com considerável qualidade. Soldagem a arco elétrico com proteção gasosa (TIG) TIG (tungstênio-inerte-gás) São freqüentemente chamados de Heliarc, Heliwelding e Argonarc, nomes derivados da combinação entre o arco e o gás. Os gases normalmente empregados são o argônio ou o hélio, que têm a função de proteger o metal em estado de fusão contra a contaminação de outros gases da atmosfera, tais como o oxigênio e o nitrogênio (Fig. 13). Solda processo TIG (tungstênio-inerte-gás) Fig. 13 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 12 Companhia Siderúrgica de Tubarão O calor necessário para a soldagem provém de um arco elétrico estabelecido entre um eletrodo de tungstênio (não consumível) e o metal-base. O processo TIG difere da solda convencional e do MIG, pois o eletrodo não se funde e não deposita material. Quando necessário, pode-se utilizar metal de adição, como na solda oxiacetilênica (vareta), mas não se deve estabelecer comparações entre os dois processos. É normalmente utilizado para todos os aço, aços inoxidáveis, ferro fundido, ligas resistentes ao calor, cobre, latão, prata, ligas de titânio, alumínio e suas ligas, etc. Questionário - Resumo 1) Cite três vantagens das junções soldadas, em relação a outros tipos. 2) Quais os dois grupos principais de processos de soldagem? 3) Quais as principais fontes de calor utilizadas nos processos de soldagem? 4) Especifique três processos principais de soldagem por arco elétrico. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 15 Equipamentos Garrafas de acetileno O acetileno é fornecido em garrafas de aço (Fig. 15), com uma capacidade de 40 l, a qual é preenchida internamente por uma massa porosa de 16 l de acetona. Ele é solubilizado na acetona, pois normalmente o acetileno puro só pode ser comprimido até 1,5 bar sem que ocorra problemas, o que significa baixo conteúdo. O acetileno solubilizado na acetona pode ser comprimido sem problemas a 15 bar, ocorrendo assim 6000 l de gás acetileno por garrafa. Garrafa de acetileno Fig. 15 O consumo de acetileno não deve ser superior a 1000 l/h. As garrafas, cuja cor é vermelha, devem ficar na posição vertical e nunca expostas ao sol. O acetileno combinado com o ar em torno de 2 a 8% torna-se inflamável e explosivo. Garrafa de oxigênio Possui um conteúdo de 40 l, numa pressão de 150 bar, e uma quantidade de 6000 l de gás. Não deve ter graxa ou óleo nas válvulas, pois provoca combustão. Não deve ser utilizado mais de 1200 a 1500 l/h, por curto espaço de tempo. A garrafa de oxigênio é de cor azul ou preta. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 16 Companhia Siderúrgica de Tubarão Maçarico de soldar O maçarico de soldar (Figs. 16 e 17) é composto de um dosador, onde o oxigênio circula numa pressão de 2-5bar, provocando uma depressão que arrasta o acetileno (0,4 bar), formando a mistura. A mistura circula até o bico de maçarico, em condições para iniciar a chama. Maçarico de solda Fig. 16 Esquema da mistura dos gases no maçarico Detalhe Z Fig. 17 O fluxo de mistura gasosa deverá sair do bico do maçarico, com uma velocidade que depende da pressão necessária para soldar. A velocidade do fluxo deve ser maior que a propagação da combustão do gás empregado, para se evitar o retrocesso da chama. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 17 Tabela 1 Espessura do material em mm Número do bico Pressão de oxigênio em atm aprox. Pressão de acetileno em bar Diâmetro do orifício do bico em mm Consumo de oxigênio em litros/hora 0,5-1 1 1 0,2 0,74 100 1-1,5 2 1 0,2 0,93 150 1,5-2 3 1,5 0,25 1,20 225 2-3 4 2 0,3 1,4 300 3-4 5 2,5 0,4 1,6 400 4-5 6 3 0,45 1,8 500 5-7 7 3 0,48 2,1 650 7-11 8 3,5 0,5 2,3 800 11-15 9 4 0,52 2,5 900 Obs.: 1 bar = 10N/cm2 → 0,2kg/cm2 = 2N/cm2 = 0,2 bar Equipamentos Auxiliares Reguladores de pressão São acessórios que permitem reduzir a elevada e variável pressão do cilindro a uma pressão de trabalho adequada para a soldagem e manter essa pressão constante durante o processo (Fig. 18). Regulador de pressão Fig. 18 Tipos de pressões São três os tipos de pressões de trabalho do acetileno: • Alta pressão Quando o acetileno trabalha na faixa de 3 a 5N/cm2. • Média pressão Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 20 Companhia Siderurgica de Tubarão Como resíduos da combustão do CO e H2, combinados com o oxigênio, resultam CO2 e H2O./ Equações da combustão 1ª fase: C2H2 + O2 ⇒ 2CO + H2 (Dardo) 2ª fase: 2CO + O2 ⇒ 2CO2 2H2 + O2 ⇒ 2H2O (Penacho) A Figura 21 apresenta as diversas faixas de temperaturas nas diversas regiões da chama. Em função do gráfico, pode-se posicionar a chama, para se obter a temperatura máxima que é de aproximadamente 3200ºC. Chama oxiacetilênica (Penacho) Fig. 21 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 21 Chama oxiacetilênica A quantidade de calor produzida pela chama depende da quantidade de gás que é queimado. A temperatura alcançada pela chama depende do combustível utilizado e da regulagem dos gases. Ingnição e extinção da chama Deve-se observar a seguinte seqüência para acender o maçarico. Primeiro, abre-se a válvula do gás oxigênio e, em segundo lugar a válvula do gás acetileno. Para se extinguir a chama, fecha-se primeiro a válvula do gás acetileno e, em seguida, a válvula do gás oxigênio. Regulagem de chama Entende-se por regulagem da chama a variação da proporção entre os gases. Para cada proporção entre os gases, obtém-se também uma variação do tipo de chama e com isso uma respectiva variação da sua temperatura. Tipos de chamas As características da chama oxiacetilênica variam com relação à mistura de oxigênio e acetileno, conforme as Figuras 22, 23 e 24. Segundo essa relação, as chamas podem ser carburante, neutra e oxidante. Chama carburante Tem a tendência de provocar a carbonetação do metal em fusão, devido ao excesso de acetileno (Fig.22). Chama carburante Fig. 22 Possui pouca utilização; geralmente é usada em alumínio e ferro fundido maleável. Possui acetileno em excesso, em relação ao oxigênio. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 22 Companhia Siderurgica de Tubarão Chama neutra É obtida através da relação 1:1 entre oxigênio e acetileno. Possui um cone interno bem definido, de um branco intenso. É empregada amplamente para soldar e aquecer. Em função de sua neutralidade, ocorre uma atmosfera de proteção da solda. Possui uma grande aplicação nos materiais ferrosos em geral (Fig. 23). Chama neutra Fig. 23 Chama oxidante É obtida através de um excesso de oxigênio em relação ao acetileno. Tem a temperatura mais elevada das chamas. Na soldagem dos aços, provoca a descarbonetação ou a oxidação do metal fundido. É utilizada no processo de oxicorte e também da soldagem de latões de cobre (Fig. 24). Chama oxidante Fig. 24 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 25 Propriedades dos gases combustíveis Na soldagem a gás, os combustíveis mais empregados são o acetileno, o propano e o metano, porém, em função de suas características e propriedades, faz-se necessário o conhecimento das variáveis descritas na tabela 2, que apresenta uma comparação entre os gases combustíveis. Em posse de tais conhecimentos, pode-se melhor otimizar a utilização dos gases em função do tipo de trabalho a executar. Tabela 2 Propriedades Acetileno Propano Metano Temperatura da chama (ºC) Velocidade de combustão (cm/s) Potência da chama (kj/cm2.s) Relação da mistura oxigênio/gás Poder calorífico (kcal/cm3) 3200 700 16,0 1,5:1 14000 2800 270 2,5 3,75:1 22300 2700 2760 6,5 1,6:1 4300 Métodos de soldagem A qualidade de uma solda depende do modo como são conduzidos o maçarico e a vareta. Para conduzi-los, é necessário que se observem as seguintes diretrizes: o maçarico deve se manter firme e inclinado com o ângulo o mais correto possível; a região da chama de maior temperatura deve ser dirigida à peça, para que se obtenha uma fusão uniforme das partes ou região da solda. O movimento do maçarico deve ocorrer quando a região da solda for maior que a zona de calor. Tais procedimentos se empregam tanto para solda à esquerda, como solda à direita. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 26 Companhia Sideurgica de Tubarão Soldagem à esquerda Deve ser empregada para se soldarem chapas finas de até 3mm de espessura, sendo muito aplicada na soldagem de metais não- ferrosos (Al.Cu) e tubos de até 2,5mm de espessura. O percurso da solda segue da direita para a esquerda, na direção da chama de solda (Fig. 28). Soldagem à esquerda Fig. 28 Em função disso, o material se encontra preaquecido. É um processo lento que consome muito gás, porém produz soldas de bom aspecto e é de fácil execução. A chama de solda deve se movimentar através de um movimento pendular imposto ao maçarico. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Rsgional do Espirito Santo 27 Soldagem à direita Emprega-se para se soldarem chapas com mais de 3mm de espessura. O maçarico deve ser mantido sem movimento e conduzido contra o fluxo do material fundido, ao mesmo tempo em que se emprega um movimento circular na vareta. Possui as vantagens de se poder observar a peça de fusão, evitando-se, assim, a existência de regiões frias. Mediante a manutenção da inclinação, emprega-se menor quantidade de material (Fig. 29). Soldagem à direita Fig. 29 É um processo rápido e econômico. Obtém-se uma maior velocidade de soldagem, diminuindo-se as tensões de contração. Com uma adequada pressão da chama, inclinação do maçarico e movimento da vareta, obtém-se um bom cordão de solda. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 30 Companhia Siderurgica de Tubarão Regras de segurança • Observe nos trabalhos de solda que acetileno, propano, metano, hidrogênio, quando combinados com o ar, são explosivos. • Óleo, gordura e graxa em válvulas de oxigênio podem provocar risco de vida, pois tal combinação pode provocar combustão e posterior explosão da garrafa. • As garrafas devem estar posicionadas sempre na vertical. • No caso de retrocesso de chama, fechar a válvula de acetileno e logo após a de oxigênio, resfriando em seguida o maçarico em água. • As garrafas nunca devem ser roladas para transporte. • O frio prejudica a garrafa de acetileno e altas temperaturas podem provocar sua explosão. • Ao soldar, devem-se usar roupas adequadas de proteção contra queimaduras e óculos para proteger os olhos das radiações provocadas pela chama. Questionário - Resumo 1) Cite os elementos principais de um maçarico para solda. 2) Como ocorre a mistura dos gases no maçarico? 3) Para que servem os dois manômetros do regulador de pressão? 4) Qual a função do parafuso no regulador de pressão? 5) Quais são os dois gases mais usados na soldagem oxiacetilênica e por que eles são usados? 6) Por que a chama neutra normalmente é a mais adequada? 7) Quais as três zonas da chama? 8) Como se desenvolve a temperatura da chama em relação à distância do bico? Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 31 Corte por ação térmica e goivagem Corte oxiacetilênico O corte oxiacetilênico é um procedimento térmico para cortar aços não ligados ou de baixa liga. O procedimento se baseia na propriedade inerente dos aços de se oxidarem rapidamente em contato com o oxigênio puro, ao atingirem a temperatura de queima - aproximadamente 1200ºC. Através da chama de aquecimento prévio do maçarico de corte, o aço é aquecido à temperatura de queima, a qual é inferior à temperatura de fusão. Após atingir essa temperatura, abre-se a válvula de oxigênio puro. O oxigênio puro sob pressão atua na região de corte provocando grande oxidação e queima do aço (Fig. 32). A combustão se processa rapidamente, porém apenas na região em que incide o jato de oxigênio. Com a queima, produz-se óxido, que possui grande fluidez e é eliminado pelo jato de oxigênio. A força do jato de oxigênio produz superfícies de corte na peça. Corte oxiacetilênico manual Fig. 32 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 32 Companhia Siderurgica de Tubarão Bicos de corte Os bicos de corte possuem na mesma peça saídas anelares da chama, com as quais se processa o aquecimento, e uma saída central para o oxigênio, com a qual se processa o corte. Para o aquecimento, deve ser usada a chama neutra. As Figuras 33 e 34 apresentam alguns tipos de bicos de corte. Esquema de bicos de corte Fig. 33 A Orifício para chama de aquecimento B Jato de oxigênio de corte Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 35 Tipos de maçaricos para corte manual Existem vários tipos de maçaricos para corte manual, os quais se prestam a variados tipos de trabalhos. As Figuras 35 a 41 apresentam alguns deles. Tipos: • maçarico para corte reto, com roldana de deslocamento (Fig. 35); Fig. 35 • maçarico para corte reto, com ponte posicionadora de altura (Fig. 36); Fig. 36 • maçarico para corte de cabeça de rebites (Fig. 37); Fig. 37 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 36 ompanhia Siderurgica de Tubarão • maçarico para corte de barras perfiladas, com ponta posicionadora de altura (Fig. 38); Fig. 38 • maçarico para corte circular, com roldana para deslocamento (Fig. 39); Fig. 39 • maçarico para cortes circulares de pequenos diâmetros, com ponta posicionadora (Fig. 40); Fig. 40 • maçarico para corte de tubos e cilindros, com dispositivo de regulagem e com roldanas para deslocamento (Fig. 41). Fig. 41 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 37 Qualidade do corte A superfície de corte deve apresentar um bom acabamento, o que significa que deve obedecer às seguintes características: • pequena defasagem; • superfície regular de corte; • fácil desprendimento da escória; • aresta superior de corte levemente arredondada. Fig. 42 Classificação dos Cortes Os cortes são definidos em função da chapa que se deseja cortar e podem ser leves, médios ou pesados. • leves, para chapas até 1”; • médios, para chapas de 1” até 5”; • pesados, para chapas com mais de 5”. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 40 Companhia siderurgica de Tubarão Tipos de cortes em chanfros por máquinas Chanfro simples Neste tipo de corte, usam-se dois maçaricos: o primeiro posicionado na vertical, aparando a borda da chapa; o segundo com o ângulo de indicação que se deseja executar o corte. O maçarico que executa o corte do ângulo deve ter uma chama de preaquecimento mais intensa porque, em função da inclinação, ocorre perda de rendimento que deve ser compensada (Fig. 49). Tipo de corte Fig. 49 Chanfro duplo Para a execução deste chanfro, utilizam-se três maçaricos: o primeiro cortando verticalmente; o segundo fazendo o corte de fundo e o terceiro executando o corte de topo (Fig. 50). Fig. 50 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 41 A distância entre os dois primeiros maçaricos deve ser suficiente para separar os jatos de oxigênio e de corte (Figs. .51 e 52). Fig. 51 Fig. 52 No caso de a temperatura abaixar após o primeiro corte, será formado um filme de óxido solidificado pelo calor dos dois primeiros, podendo o corte, portanto, ficar mais atrasado. Para o início do segundo e terceiro cortes, não é necessário parar a máquina. Em chapas finas (até 3/4”), a distância será de 10 a 12mm. Quando a chapa for de espessura maior, a distância entre o maçarico será menor. Nos casos em que o corte do segundo maçarico é feito fora da zona aquecida pelo primeiro, pode-se posicionar os dois no mesmo alinhamento (perpendicular à direção do corte), dando porém mais inclinação ao segundo maçarico, fazendo com que o jato do oxigênio passe por trás do jato do primeiro (Fig. 53). Fig. 53 Dessa forma, os dois primeiros maçaricos aquecem a mesma área e beneficiam o terceiro, que pode iniciar o corte sem que a máquina seja parada (Fig. 54). Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 42 Companhia Siderúrgica de Tubarão Fig. 54 Defeitos típicos em corte a gás Um corte bem executado assegura uma face lisa, sem oxidação excessiva e no esquadro com as faces da chapa ou peça. Os erros de seleção dos parâmetros dão os efeitos mostrados em seguida. Defeitos nas arestas Canto superior arredondado Pode ocorrer por utilização muito lenta do avanço do maçarico; distância do bico excessiva ou insuficiente; bico grande demais para o corte; ou ainda, pressão excessiva do oxigênio ou acetileno (Fig. 55). Fig. 55 Canto inferior arredondado Pode ocorrer por excesso de velocidade ou excesso de oxigênio (Fig. 56). Fig. 56 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 45 Defeitos na face de corte no sentido longitudinal Ondulação recurvada para trás no fundo Ocorre devido à velocidade excessiva, bico muito pequeno ou oxigênio insuficiente (Fig. 65). Defeitos na face do corte Fig. 65 Ondulação recurvada para frente no centro Ocasionada por jato de oxigênio prejudicado pela sujeira ou pela rebarba ou bico inclinado para frente (Fig. 66). Defeitos na face do corte Fig. 66 Ondulação em S Pode ser provocada por sujeira, desgaste ou rebarba no bico (Fig. 67). Defeitos na face do corte Fig. 67 Ondulação desuniforme Pode ser provocada por aplicação de velocidade não uniforme ou, ainda, existência de incrustações na chapa (Fig. 68). Defeitos na face do corte Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 46 Companhia Siderúrgica de Tubarão Fig. 68 Profundidade excessiva Normalmente causada por distância insuficiente do bico ou chama muito forte. É algo comum se o material é um aço-liga (Fig. 69). Defeitos na face do corte Fig. 69 Profundidade desuniforme Ocorre por variação na velocidade de condução do maçarico (Fig. 70). Defeitos na face do corte Fig. 70 Indentações ocasionais Ocorrem quando há crepitações (pulsação) da chama, ferrugem ou sujeira na chapa (Fig. 71). Defeitos na face de corte Fig. 71 Indentações contínuas Podem ser ocasionadas pela distância insuficiente do bico, chama muito fraca, sujeira ou ferrugem na chapa (Fig. 72). Defeitos na face de corte Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 47 Fig. 72 Indentação na parte inferior Ocorrem por deformação da chama devido a sujeira ou bico danificado (Fig. 73). Defeitos na face de corte Fig. 73 Corte incompleto Corte incompleto no final Ocorre quando o jato de oxigênio não é uniforme devido a rebarba ou sujeira no bico (Fig. 74). Defeitos na face de corte Fig. 74 Corte perdido Ocorre se a distância do bico à chapa é excessiva; por bico sujo, gasto ou com rebarbas; por chapa suja ou com ferrugem. Pode ocorrer também em chapas com alto teor de carbono ou com separações internas. Defeitos por escória Escorrimento Normalmente ocorre quando se utilizam chama fraca ou oxigênio insuficiente (Fig. 75). Defeitos por escória Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 50 Companhia Siderúrgica de Tubarão Fig. 78 Corte a arco elétrico com eletrodo metálico A Figura 79 apresenta o processo simplificado, no qual o arco elétrico é gerado com a peça através de um eletrodo metálico, que possui um orifício central por onde flui o jato de ar comprimido ou oxigênio a elevada velocidade. Corte com eletrodo metálico com jato direto Fig. 79 A ação do jato diretamente no arco elétrico e, consequentemente, na região de fusão, oferece melhores condições de corte, obtendo-se superfície de qualidade melhor que no processo anterior. Corte a plasma O corte a plasma se utiliza do calor de um arco elétrico combinado com um gás ionizado (plasma, que é o quarto estado da matéria). O arco obtido atinge a temperatura de até 20.000ºC, sendo, dessa forma, utilizado para o corte de qualquer metal ferroso. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 51 É um processo de corte que separa os metais pela fusão de uma área localizada com um arco constrito, e pela remoção do material fundido com um jato de gás ionizado quente, em alta velocidade (Fig. 80). Corte com eletrodo metálico com jato direto Fig. 80 Pode ser utilizado no corte manual, com maçarico portátil, ou em corte mecanizado, utilizando-se máquinas extremamente precisas e dispositivos especiais de traçagem. O seu maior uso é no corte de aços e metais não-ferrosos de espessuras finas até médias. É muito utilizado para metais que contém elementos de liga os quais produzem óxidos refratários, por exemplo, aços inoxidáveis e alumínio. Requer menor habilidade do operador que nos demais processos, com exceção do corte manual, em que o equipamento é mais complexo (tabela 4). Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 52 Companhia Siderúrgica de Tubarão Tabela 4 - Parâmetros para corte a plasma Materia l Espessura Corrente Largura do canal Velocidade do avanço Consumo do gás mm A mm mm/min Ar H2 N2 2 50 2.0 1600 5 - 10 5 50 2.0 1000 12 8 - Aço 5 50 2.0 1800 12 8 - de 10 100 3.0 800 12 8 - alta 20 100 3.0 400 12 8 - liga 20 250 4.5 800 15 12 - 40 250 4.5 300 15 12 - 60 250 4.5 150 15 12 - 125 500 9.0 100 30 15 - 5 50 2.0 1500 12 8 - 5 100 3.0 2500 12 8 - Alumínio 10 100 3.0 1200 12 8 - 20 100 3.0 600 12 8 - 40 250 4.5 500 15 12 - 85 250 4.5 150 15 12 - No processo de corte a plasma, usa-se um arco constrito atirado entre um eletrodo, resfriado à água, e a peça. O orifício que restringe o arco também é resfriado por água. No processo, é utilizada a corrente contínua com eletrodo negativo. A qualidade da superfície de corte é superior a dos demais processos, devido à elevada temperatura encontrada. Características do processo Em função das espessuras das peças, que variam de 6 a 150mm, pode-se atingir velocidades de corte de 10 a 450m/h. A faixa de corrente utilizada varia de 70 a 1.000A, em função da superfície de corte de que se necessita. Além do seguimentos necessários - fonte de energia, sistema de refrigeração e maçaricos - há os gases consumíveis, que são oxigênio combinado com um gás que pode ser argônio, hidrogênio ou nitrogênio. Atualmente, utiliza-se uma mistura de argônio e hidrogênio, com a qual se obtêm uma potência e uma qualidade de corte muito superiores ao hidrogênio. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 55 Fig. 86 Corrente: 260 a 800A Avanço: 350 a 550mm/min Quantidade de ar comprimido: 187 a 626 l/min. Pressão: 4 a 6 bar Nos processos mais atuais, utilizam-se eletrodos que já possuem um canal interno, através do qual flui o jato de ar comprimido. O ar é injetado a uma pressão de 60 a 70N/cm2 (50 a 100ls/pol2) Goivagem a arco elétrico e oxigênio Através deste processo, pode-se executar goivagem em materiais ferrosos e não-ferrosos e suas ligas, bem como em aços de baixa liga. Podem-se também, em casos especiais, executar, de modo simples e rápido, furos de 6 a 9mm em chapas de aço de até 200mm de espessura. Como apresenta a Figura 87, o eletrodo é construído de um tubo metálico de paredes finas, possibilitando o fluxo de oxigênio a alta pressão. Seu diâmetro externo situa-se entre 1,5 e 3,5mm. Fig. 87 Eletrodo metálico Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 56 Companhia Siderúrgica de Tubarão Entre as vantagens, pode-se salientar a elevada velocidade de trabalho - em torno de 1000mm/min. As Figuras 88 e 89 apresentam operações de goivagem do processo, bem como alguns parâmetros do trabalho. Goivagem a arco elétrico e oxigênio Fig. 88 Fig. 89 Corrente: 110 a 350A Avanço: 750mm/min Quantidade de oxigênio: 150 a 316 l/min Pressão: 3 bar Considerações A goivagem a arco elétrico apresenta uma eficiência 2 a 3 vezes maior que nos processos a gás, além de provocar uma zona termicamente afetada mais estreita, influenciando de forma reduzida o metal-base. Esses fatores fazem com que sua utilização atualmente seja bem maior que a goivagem a gás. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 57 Questionário - Resumo 1) Descreva o corte oxiacetilênico. 2) Quais os principais tipos de corte? 3) O que são máquinas de corte? 4) Como podemos executar um chanfro duplo? 5) Qual a importância do pó de ferro no corte a gás? 6) Descreva o corte a arco elétrico. 7) Por que o corte a plasma é indicado para os aços inoxidáveis? 8) Descreva a goivagem a gás. 9) Descreva a goivagem a arco elétrico. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 60 Companhia Siderúrgica de Tubarão Em geral, forma-se um campo magnético, por onde flui uma determinada corrente elétrica. Por exemplo: • Em torno de um condutor elétrico (Fig. 95). Fig. 95 • Em torno de um arco elétrico gerado (Fig. 96). Fig. 96 • No interior e em torno de uma bobina (Fig. 97). Fig. 97 Para que possa haver um fluxo de corrente, o circuito de início deve ser fechado (Fig. 98). Fig. 98 A corrente pode ser contínua ou alternada. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 61 A intensidade da corrente elétrica é medida em ampère (A). Quanto maior a amperagem, maior será o efeito da corrente elétrica, sob as mesmas condições (Fig. 99). Fig. 99 A tensão elétrica é medida em volt e, sob as mesmas condições, quanto maior a voltagem, maior será a corrente, bem como sua intensidade em A, que passará pelo condutor (Fig. 100). Fig. 100 A resistência à passagem da corrente elétrica por um determinado material chama-se de resistência elétrica, que é medida em ohm. Quanto maior for a resistência elétrica, maior deve ser a tensão para que se tenha a mesma corrente fluindo no condutor. Numa tensão constante, verifica-se: • grande resistência - baixa corrente • pequena resistência - alta corrente Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 62 Companhia Siderúrgica de Tubarão Comparação entre o circuito hidráulico e o circuito elétrico na soldagem Observando-se os dois circuitos (Figs. 101a e 101b), pode-se notar a semelhança entre ambos. Possuem um elemento gerador de fluxo, bem como um elemento que oferece uma determinada resistência. No circuito elétrico de soldagem, essa resistência ocorre no arco elétrico. Circuito hidráulico Fig. 101a Circuito elétrico Fig. 101b Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 65 O arco elétrico É uma descarga elétrica mantida em meio ionizado, com desprendimento de intenso calor e luz. Compara-se o arco elétrico a um raio que queima, porém, durante um certo tempo. No arco elétrico, tem-se também um circuito fechado. A diferença entre outros circuitos fechados, é que, no caso de arco elétrico, a corrente flui através da atmosfera por uma pequena distância, mesmo o ar não sendo bom condutor (Fig. 105). Arco elétrico Fig. 105 No comprimento do arco elétrico, existe uma mistura de moléculas, átomos, íons e elétrons. Nesse caso, o ar é ionizado, podendo vir a ser um condutor; a corrente pode fluir, porém o arco tem de ser aberto. Fontes de corrente de soldagem A soldagem não pode ser executada, utilizando-se diretamente a corrente normal da rede. A tensão é muito elevada, podendo ser de 110, 220, 380 ou 440V. Com tais valores de tensão, existe perigo de vida. Além disso, torna-se necessária uma elevada intensidade de corrente, a qual provocaria danos na rede, em função da sua pequena secção de condutores. A rede não suportaria a sobrecarga. Com relação à fonte de corrente de soldagem, devem-se fixar exigências especiais. • A tensão em vazio permitida para corrente alternada deve ser no máximo 70V. No caso de corrente contínua, máximo 100V, em função do risco de vida. • Na própria soldagem, ocorre uma crescente intensidade de corrente e redução de tensão (tensão de trabalho, na intensidade de corrente regulada na máquina ⇒ potência = V.A. (Volt Amper). • No curto-circuito, a intensidade de corrente não deve ultrapassar um determinado valor limite. A tensão para abrir o arco deve ser rapidamente atingida. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 66 Companhia Siderúrgica de Tubarão Máquinas de solda São equipamentos destinados a fornecerem ao circuito elétrico de soldagem a tensão e a corrente necessárias para ignição e funcionamento estável do arco elétrico. Existem três tipos de máquinas utilizadas na soldagem. Transformadores: fornecem corrente alternada para a soldagem. Geradores e retificadores: fornecem corrente contínua para a soldagem. Transformador para soldagem Os transformadores de soldagem podem apenas ser conectados à corrente alternada e fornecem só esse tipo de corrente. Isso está relacionado com a contínua variação do campo magnético na bobina primária, onde circula apenas corrente alternada. Essa constante variação ou alternância do campo magnético gera corrente na bobina secundária (Fig. 106). Fig. 106 Nos transformadores, modifica-se apenas a tensão da corrente alternada. Pode ser do tipo monofásico ou trifásico e ser alimentado com tensões de 110, 220, 380 e 440V. Os transformadores, sendo máquinas para soldagem com corrente alternada, não têm polaridade definida e só permitem o uso de eletrodos apropriados para esse tipo de corrente. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 67 A máquina normalmente dispõe de dois terminais para ligação de cabo terra e porta-eletrodo (Fig. 107). Representação esquemática de um transformador de solda de alta potência com comutador especial para chapas finas. Gama de regulagem da corrente: 20 a 80A Diâmetro do eletrodo: 1 - 4mm Secção do cabo de solda: 25mm2 Fig. 107 Na maioria dos casos, tem um dispositivo volante com o qual se regula a intensidade da corrente (Fig. 107). Observação: Em função do consumo de potência em trabalhos de longa duração utilizando-se eletrodos de diâmetros maiores, deve-se ter o cuidado de selecionar-se a máquina com potência adequada. Junto à Figura 107, existem algumas especificações de um transformador. Desvantagens dos transformadores • Desequilibram a rede de alimentação, devido à sua ligação monofásica. • Devido à alternância da corrente de soldagem, que passa por zero a cada semiperíodo, a tensão em vazio da máquina (42V) precisa ser elevada, a fim de possibilitar-se o reacendimento do arco elétrico. • Não podem ser usados com eletrodos que não proporcionem boa ionização da atmosfera por onde flui o arco elétrico. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 70 Companhia Siderúrgica de Tubarão limpeza planejada, bem como uma troca periódica de suas escovas. Os geradores de corrente contínua apresentam, como desvantagem, o alto custo de aquisição em relação aos demais, bem com um alto custo de manutenção, por possuírem partes móveis. Entretanto, apresentam de positivo a melhor estabilidade do arco elétrico. Retificadores de soldagem O retificadores de soldagem são constituídos basicamente de um transformador trifásico, cujo secundário é ligado a uma ponte de retificadores. Os retificadores são elementos que somente permitem a passagem de corrente em um só sentido, portanto convertem a corrente alternada em corrente contínua de saída. A Figura 112 apresenta uma idéia da transformação da corrente alternada trifásica numa corrente contínua pulsante pela ação dos retificadores. As pulsações se interrompem com a utilização da corrente de soldagem. Os retificadores, no que diz respeito aos custos de aquisição e de manutenção, à vantagens inerentes às máquinas de corrente contínua, isto é, operam com baixas tensões em vazio, proporcionam um regime de arco elétrico estável e permitem a utilização de qualquer tipo de eletrodo. Fig. 112 Observação: Em caso de incêndio, devem ser utilizados extintores de CO2 ou nitrogênio. Solda a arco elétrico com eletrodo revestido Abertura do arco elétrico Visto que o ar não é um condutor, o arco deve ser inicialmente aberto através de um curto-circuito (Figs. 113 a 115), fazendo Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 71 com que, ao levantar-se o eletrodo (Fig. 115), a corrente flua neste instante com elevada amperagem. Fig. 113 Fig. 114 Fig. 115 A elevada corrente no instante do curto-circuito provoca um intenso aquecimento, tendo-se, portanto, uma elevada temperatura. A elevada temperatura faz com que ocorra a fusão do eletrodo, cujas partículas fundidas passam a se transferir para a peça formando uma poça de fusão. Formas de transferência do metal de adição Após a abertura do arco e fusão do eletrodo, a transferência do material do eletrodo para a peça pode vir a ocorrer através de gotas fundidas de tamanhos grandes, médios ou pequenos (quase névoa) (Fig. 116). Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 72 Companhia Siderúrgica de Tubarão Fig. 116 O tipo de transferência depende da corrente de soldagem, composição do eletrodo, comprimento do arco elétrico e composição do revestimento. Por exemplo, a Figura 117-1 caracteriza um processo com baixa corrente, enquanto que a Figura 117-3 caracteriza um processo com alta corrente. Fig. 117 O revestimento do eletrodo também influência na forma com que o material se funde. As Figuras 118 a 120 apresentam os tipos de gotejamento. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 75 Eletrodos de solda Na soldagem a arco elétrico, o eletrodo é um elemento dos mais importantes na transferência de material. Num eletrodo não revestido ocorre, durante a transferência, a combinação de O2, H2 e N2, existentes na atmosfera, com o metal fundido e com a poça de fusão. Os gases O2, H2 e N2 tendem a oxidar o metal de adição do cordão de solda, bem como interferir no arco elétrico, no resfriamento e na estrutura resultante (Fig. 124). Fig. 124 O eletrodos normalmente possuem revestimentos de materiais não metálicos que, ao se fundirem, formam uma escória que, solidificando-se, atua como uma cobertura protetora do material de adição e do cordão de solda (Fig. 125). Fig. 125 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 76 Companhia Siderúrgica de Tubarão Além disso, existem eletrodos que, em função da composição do revestimento, geram gases e fumaça (Fig. 126), os quais protegem o arco da ação dos gases O2, H2 e N2, bem como o metal de adição. O revestimento torna mais fácil a fusão do eletrodo, melhorando ainda a condutibilidade elétrica na região do arco, tornando-o mais estável e de fácil condução. Fig. 126 Sopro magnético O sopro magnético é um fenômeno que ocorre na soldagem a arco elétrico com corrente contínua. O arco não é gerado regularmente, encurva-se e pode até se extinguir. A corrente que circula no condutor forma em torno dele um campo magnético (Fig. 127). No caso da corrente contínua, ele ocorre sempre em uma mesma direção. Fig. 127 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 77 O arco elétrico é uma parte da corrente que circula no condutor. Ele reage à ação do campo magnético, desviando-se e curvando- se. Existem em geral dois tipos de desvios: Compressão do arco Ocorre principalmente nos materiais não magnetizáveis, como nos aços especiais, alumínio, cobre, etc. O campo magnético comprime o arco elétrico para fora (Fig. 128). Fig. 128 Compressão da massa magnética No aço magnetizável, a força de atração das peças magnetizadas é muito grande; o arco desvia-se no sentido da maior massa de aço, ou seja para o meio da peça (Fig. 129). Fig. 129 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 80 Companhia Siderúrgica de Tubarão • Soldar na direção de um ponto de solda já executado (Fig. 136). Fig. 136 • Empregar a técnica de passe à ré. • Utilizar uma seqüência adequada de soldagem (Fig. 137). Fig. 137 • Enrolar um cabo terra em volta da peça e fazer com que a direção do campo magnético neutralize o efeito causador do sopro. • Colocar uma massa adicional de aço para minimizar o sopro magnético (Fig. 138). Fig. 138 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 81 • Embora seja raramente aplicado, pode-se também alterar a conexão de corrente (Fig. 139). Fig. 139 • Para execução de trabalhos de soldagem que exijam o emprego de corrente acima de 250A, utilizar um transformador de correntes alternadas. Porém, observar que não se aplica a todos os tipos de eletrodos (Fig. 140). Fig. 140 Seleção dos parâmetros de soldagem A escolha adequada dos parâmetros operacionais é de suma importância na condução da operação de soldagem a arco elétrico com eletrodos revestidos. A seleção se faz mediante a tensão, a corrente, a velocidade e a penetração de soldagem. Tensão de soldagem A tensão de soldagem é regulada em função do tipo de eletrodo, mas, geralmente, para uma dada classe de revestimento, ela varia linearmente com o comprimento do arco. Arcos muito longos tendem a causar instabilidade. Acompanhada de baixo insumo de calor, existe ainda a possibilidade de ocorrer oxidação ou nitrogenação da poça de fusão. Em conseqüência, a soldagem é acompanhada de muitos respingos, com baixa taxa de deposição. O comprimento do arco deve ser de uma vez o diâmetro do eletrodo, para as operações de soldagem convencionais. Dentro desses limites, a tensão de soldagem na posição plana varia de 20 a 30 volts, para diâmetro na faixa de 3 a 6 milímetros do eletrodo. Para as posições verticais e sobrecabeça, é conveniente Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 82 Companhia Siderúrgica de Tubarão trabalhar com um arco mais curto e uma tensão de soldagem cerca de 2 a 5 volts mais baixa, para um controle mais eficiente da operação. O comprimento apropriado do arco é percebido pelo próprio som produzido durante a soldagem. Um crepitar constante e uniforme denota um arco estável; crepitações e explosões indicam inadequação de comprimento do arco. O comprimento do arco depende exclusivamente da habilidade do soldador, no caso de soldagem manual com eletrodos convencionais. O comprimento adequado do arco proporciona uma penetração uniforme, uma alta taxa de deposição e um cordão livre de mordeduras. Corrente de soldagem É determinada basicamente pelo tipo de material a ser soldado e pelas características específicas da operação, como geometria e dimensões da junta, diâmetro e classe de revestimento do eletrodo, posição de soldagem, etc. Dependendo do material, a dissipação do calor na zona de solda pode ser bastante alta, necessitando, por conseguinte, de um alto valor de corrente e muitas vezes de um preaquecimento da região a ser soldada. Uma corrente excessivamente alta também poderá acarretar a perda de elementos de liga. Em materiais de alta liga, poderá ocasionar trincas a quente, como na soldagem dos aços austeníticos, e produzir uma zona termicamente afetada de dimensões significativas. Daí a importância da seleção cuidadosa da corrente de soldagem. Como regra prática, tem-se 40A x ∅ do eletrodo. Tabela 6 - Parâmetros de tensão e corrente de soldagem Dados do eletrodo Parâmetros elétricos Diâmetro mm secção mm2 Tensão ( V ) Corrente média ( A ) Dens. média de corrente A/mm2 1,5 1,77 20 40 ± 10 ∼ 23 2,0 3,14 22 65 ± 15 ∼ 22 2,5 4,91 23 80 ± 30 ∼ 17 3,25 8,30 24 130 ± 50 ∼ 16 4,0 12,57 26 170 ± 60 ∼ 14 5,0 19,64 28 20 ± 80 ∼ 12 6,0 28,27 30 300 ± 90 ∼ 11 8,0 50,27 36 400 ± 100 ∼ 8 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 85 Boa aparência Uma solda tem boa aparência quando se aprecia em toda a extensão da união um cordão uniforme, sem apresentar fendas nem saliências. Ausência de trincas Tem-se uma solda sem trincas quando no material depositado não existem trincas ou fissuras em toda a sua extensão. A seguir, serão mostradas algumas recomendações para que se efetue uma boa solda. Características Recomendações Identificação de defeitos Boa penetração Use a intensidade suficiente, para obter a penetração desejada. Selecione os chanfros corretamente no caso de peças que devam ser chanfradas. Deixe a separação adequada entre as peças a se soldarem. Pouca penetração Fig. 142 Isenta de escavações use uma oscilação adequada e com a maior uniformidade possível. Mantenha a altura do arco. Fig. 143 Boa fusão A oscilação deve cobrir as bordas da junta. A corrente adequada produzirá depósitos e penetração correta. Evite que o material em fusão deposite-se fora da união. Pouca fusão Fig. 144 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 86 Companhia Siderúrgica de Tubarão Características Recomendações Identificação de defeitos Ausência de porosidade Limpe devidamente o material base. Permita mais tempo à fusão, para que os gases escapem. Use uma intensidade de corrente apropriada. Mantenha a oscilação de acordo com a junta. Use o eletrodo adequado. Mantenha o arco a uma distância apropriada. Porosidade Fig. 145 Boa aparência Evite o reaquecimento por depósito excessivo. Use oscilação uniforme. Evite os excessos de intensidade. Fig. 146 Ausência de trincas Evite soldar cordões em fileiras, em aços especiais. Faça solda de boa fusão. Proporcione a largura e a altura do cordão, de acordo com a espessura da peça. Mantenha as uniões, com separação apropriada e uniforme. Trabalhe com a intensidade própria para o diâmetro do eletrodo. Preaqueça o material de base, em caso de peças de aço ao carbono, de grande espessura. a Trinca longitudinal b Trincas em ambos lados Fig. 147 Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 87 Simbologia de Soldagem Definições A = ABERTURA DA RAIZ Distância entre as peças a unir na raiz da junta. (Ver Fig. 148a) B = CHAPA AUXILIAR DE ESPERA Chapa auxiliar de espera ou cobre junta. Material usado como apoio, atrás da junta, durante a soldagem, e que tem a finalidade principal de evitar o vazamento descontrolado da solda através da fresta. A chapa auxiliar de espera poderá ser retirada ou não, após a soldagem. (Ver Fig. 148a). C = CORDÃO DE SOLDA Metal de solda depositado em uma junta, formando um elemento contínuo. (Ver Fig. 148a e 148b) D = GARGANTA DE UM FILETE (ALTURA DE UM FILETE) Altura relativa à hipotenusa, do maior triângulo retângulo que puder ser inscrito na seção transversal do filete. (Ver Fig. 148b). E = JUNTA DE TOPO Junta entre duas peças, topo a topo, dispostas aproximadamente no mesmo plano. (Ver Fig. 148c). F = LADOS DE UM FILETE (PERNAS DE UM FILETE) São os catetos do maior triângulo que puder ser inscrito na seção transversal do filete. (Ver Fig. 148b). G = SOLDA DE FILETE (SOLDA DE ÂNGULO) Solda de seção transversal aproximadamente triangular unindo duas peças ortogonais. (Ver Fig. 148b) H = ÂNGULO INCLUSO OU ÂNGULO DO ENTALHE Ângulo formado pela junção das duas peças. (Ver Fig. 148a). I = NARIZ Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 90 Companhia Siderurgica de Tubarão Símbolos Básicos Tipos de solda Símbolo Filete Tampão ou fenda Ponto de projeção Contínua Sem chanfro “V” Bisel “U” “J” Borda Virada Uma Borda virada Lado Oposto ou Reverso Depósito na Superfície Entre peças curvas Entre peças Curva e Plana Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito santo 91 Símbolos Suplementares Tipos de solda Símbolo Em todo contorno No campo Penetração total Liso ou plano Convexo Côncavo Questionário - Resumo 1) Cite dois efeitos de corrente elétrica. 2) O que significa condutibilidade elétrica ? 3) Que tipos de fontes podem ser utilizadas na solda elétrica ? Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 92 Copanhia Siderurgica de Tubarão Noções básicas de processo de Soldagem - Avaliação 1) Qual a definição de solda ? 2) O que é chama neutra ? 3) Quais os principais problemas na soldagem oxiacetilênica ? 4) Qual o fator mais importante na escolha da vareta de solda ? 5) Cite três características de um corte de boa qualidade. 6) Cite os três principais defeitos no corte. 7) Quais as principais vantagens da goivagem por arco elétrico sobre a goivagem a gás. 8) Para que serve o revestimento do eletrodo e quais os tipos principais ? 9) O que é sopro magnético e quais seus efeitos na soldagem ? 10) O que deve ser observado para que se consiga uma soldagem no arco elétrico de boa qualidade ? Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 95 Celulósico Contém no seu revestimento materiais orgânicos combustíveis (celulose, pó de madeira, etc.). É muito usado em soldagens nas quais a penetração é muito importante e as inclusões de escória são indesejáveis (fig. 3). Fig. 3 Ácido Seu revestimento é composto de óxido de ferro, óxido de manganês e outros desoxidantes. É utilizado com maior adequação em soldagem na posição plana. Oxidante Contém no seu revestimento óxido de ferro, podendo ter ou não óxido de manganês. Sua penetração é pequena e suas propriedades mecânicas são muito ruins. É utilizado onde o aspecto do cordão é mais importante que a resistência. Em função da oxidação de partículas metálicas, obtém-se um maior rendimento de trabalho e propriedades definidas (ferros-liga) (fig. 4). Fig. 4 Funções do revestimento Dentre as muitas funções do revestimento, encontra-se a seguir, uma série das mais importantes: • protege a solda contra o oxigênio e o nitrogênio do ar; • reduz a velocidade de solidificação; • protege contra a ação da atmosfera e permite a desgaseificação do metal de solda através da escória; ___________________________________________________________________________________________________ SENAI Departamento Regional do Espírito Santo 7 • facilita a abertura do arco além de estabilizá-lo; • introduz elementos de liga no depósito e desoxida o metal de solda; • facilita a soldagem em diversas posições de trabalho; • serve de guia das gotas em fusão na direção do banho; • serve como isolante na soldagem de chanfros estreitos, de difícil acesso. O revestimento permite também a utilização de tensões em vazio mais baixas em corrente alternada (40 a 80V) e, consequentemente, redução do consumo primário, aumentando a segurança pessoal. O mesmo é válido também para corrente contínua. Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ CST 96 Companhia Siderúrgica de Tubarão Espírito Santo ___________________________________________________________________________________________________ ___________________________________________________________________________________________________ SENAI Departamento Regional do Espirito Santo 97 Classificações dos eletrodos Introdução Existem várias entidades que classificam os eletrodos para soldagem a arco. No Brasil, as classificações mais adotadas são as da ABNT e da AWS. ABNT = Associação Brasileira de Normas Técnicas. AWS = American Welding Sociaty (Associação Americana de Soldagem). Nesta unidade, faz-se referência também à classificação segundo a norma DIN, bem como às especificações sobre as normas ASTM e JIS. Convém salientar que existem especificações próprias dos vários fabricantes de eletrodos, porém sempre tomando-se como referência as especificações equivalentes das normas.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved