Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Teoria sobre a Primeira Pratica BAC014 - Turmas PG e PH, Notas de estudo de Engenharia Mecânica

Teoria sobre a Primeira Pratica BAC014 - Turmas PG e PH

Tipologia: Notas de estudo

2013

Compartilhado em 18/08/2013

mr-brito-11
mr-brito-11 🇧🇷

4.7

(12)

453 documentos

1 / 11

Documentos relacionados


Pré-visualização parcial do texto

Baixe Teoria sobre a Primeira Pratica BAC014 - Turmas PG e PH e outras Notas de estudo em PDF para Engenharia Mecânica, somente na Docsity! 1) GENERALIDADES 1.1) INTRODUÇÃO Sempre que um corpo está a uma temperatura maior que a de outro ou, inclusive, no mesmo corpo existam temperaturas diferentes, ocorre uma cessão de energia da região de temperatura mais elevada para a mais baixa, e a esse fenômeno dá-se o nome de transmissão de calor. O objetivo de presente curso é estudar as leis e os princípios que regem a transmissão de calor, bem como suas aplicações, visto que é de fundamental importância, para diferentes ramos de Engenharia, o domínio dessa área de conhecimento. Assim como o Engenheiro Mecânico enfrente problemas de refrigeração de motores, de ventilação, ar condicionado etc., o Engenheiro Metalúrgico não pode dispensar a transmissão de calor nos problemas relacionados a processos pirometalúrgicos ou hidrometalúrgicos, ou nos projetos de fornos ou de regeneradores. Em nível idêntico, o Engenheiro Químico ou Nuclear necessita da mesma ciência em estudos sobre evaporação, condensação ou em trabalhos de refinaria e reatores, enquanto o Eletricista a utiliza no cálculo de transformadores e geradores e o Engenheiro Naval aplica em profundidade a transmissão de calor em caldeiras, máquinas térmicas, etc. Até mesmo o Engenheiro Civil e o arquiteto, especialmente em países frios, sentem a importância de, em seus projetos, preverem tubulações interiores nas alvenarias das edificações, objetivando o escoamento de fluidos quentes, capazes de permitirem conforto maior mediante aquecimento ambiental. Esses são, apenas, alguns exemplos, entre as mais diversas aplicações que a Transmissão de Calor propicia no desempenho profissional da Engenharia. Conforme se verá no desenvolvimento da matéria, é indispensável aplicar recursos de Matemática e de Mecânica dos Fluidos em muitas ocasiões, bem como se perceberá a ligação e a diferença entre Transmissão de calor e Termodinâmica.. A Termodinâmica relaciona o calor com outras formas de energia e trabalha com sistemas em equilíbrio, enquanto a Transmissão de calor preocupa-se com o mecanismo, a duração e as condições necessárias para que o citado sistema atinja o equilíbrio. É evidente que os processos de Transmissão de Calor respeitem a primeira e a segunda Lei da Termodinâmica, mas, nem por isto, pode-se esperar que os conceitos básicos da Transmissão de calor possam simplesmente originar-se das leis fundamentais da Termodinâmica. Evidente também é, sem dúvida, que o calor se transmite sempre no sentido da maior para a menor temperatura, e só haverá transmissão de calor se houver diferença de temperatura, da mesma forma que a corrente elétrica transita do maior para o menor potencial e só haverá passagem de corrente elétrica se houver uma diferença de potencial; percebe-se, de início, sensível analogia entre os fenômenos térmico e elétrico, o que é absolutamente correto, pois que, de fato, o fenômeno é de transporte e pode ser, inclusive, estudado de forma global, como calor, eletricidade, massa, quantidade de movimento, etc., resultando daí a absoluta identidade entre as diferentes leis que comandam deferentes setores do conhecimento humano. BAC014 - 1a Prática - Determinação da condutividade térmica K 1.2) REGIMES DE TRANSMISSÃO DE CALOR Seja uma parede em forma de paralelepípedo, com todas as faces suficientemente isoladas, exceto duas opostas e paralelas; de início estas faces estão à mesma temperatura Ti, logo não há transmissão de calor através da parede. Em determinado instante, eleva-se subitamente uma das faces à temperatura Tf e haverá transporte de calor na direção x (Fig. 1.4) Fig. 1.4 Imaginando-se que Ti e Tf sejam temperaturas mantidas inalteradas, haverá, para cada instante t que se considere, uma curva representativa de T = f(x), isto é, um mesmo ponto de uma mesma seção reta terá temperaturas diferentes no decorrer do tempo, daí as curvas para os tempos t1, t2, t3, etc. Desde que se conservem Ti e Tf, ocorrerá um determinado momento, a partir do qual os pontos de uma mesma seção reta não mais variarão sua temperatura com o tempo. Com esse exemplo é possível caracterizar os dois regimes em que podem suceder as formas de transmissão de calor. Durante o período em que um mesmo ponto da parede alterou sua temperatura com o tempo, diz-se que a parede estava em regime transitório, e, quando a temperatura do mesmo ponto conservou-se constante, diz-se que na parede reinava regime estacionário ou permanente; são esses os dois regimes de transmissão de calor. O regime transitório pode ser particularmente um caso de periodicidade, no qual as temperaturas de um mesmo ponto variem ciclicamente segundo uma determinada lei, como, por exemplo, uma variação senoidal ou a variação da temperatura na cobertura de um edifício, exposta dia e noite às condições atmosféricas. A esse regime costuma-se denominar regime periódico. É possível, e inclusive muito útil, definir regime estacionário e regime transitório em termos de fluxo de calor. Assim, regime estacionário é aquele em que o fluxo de calor é constante no interior da parede, pois os pontos interiores já apresentam saturação térmica e BAC014 - 1a Prática - Determinação da condutividade térmica K x T kAq x ∂ ∂ −= Calor gerado no interior do elemento: qx = q& Adx Variação da energia interna: dx T cAE τ∂ ∂ ρ=∆ Energia conduzida para fora pela face direita:             ∂ ∂ ∂ ∂ + ∂ ∂ −= ∂ ∂ −= ++ dxx T k xx T kA] x T kAq dxxdxx onde q& = energia gerada por unidade de volume c = calor específico do material ρ = densidade A combinação das relações acima fornece:             ∂ ∂ ∂ ∂ + ∂ ∂ − τ∂ ∂ ρ=+ ∂ ∂ − dx x T k xx T kAdx T cAAdxq x T kA & ou τ∂ ∂ ρ=+      ∂ ∂ ∂ ∂ T cq x T k x & 1-2 Esta é equação da condução de calor unidimensional. Para tratar do fluxo de calor em mais de uma dimensão deve-se considerar o calor conduzido para dentro e para fora do volume elementar em todas as três direções coordenadas, como mostrado na Fig. 1-3. O balanço de energia conduz a: Fig.1.3 τ +++=+++ +++ d dE qqqqqqq dzzdyydxxgerzyx sendo as quantidades de energia dadas por x T kdydzq x ∂ ∂ −= BAC014 - 1a Prática - Determinação da condutividade térmica K dydzdx x T k xx T kq dxx             ∂ ∂ ∂ ∂ + ∂ ∂ −=+ y T kdxdzq y ∂ ∂ −= dxdzdy y T k yy T kq dyy             ∂ ∂ ∂ ∂ + ∂ ∂ −=+ z T kdxdyq z ∂ ∂ −= dxdydz z T k zz T kq dzz             ∂ ∂ ∂ ∂ + ∂ ∂ −=+ dxdydzqqger &= τ∂ ∂ ρ= τ T cdxdydz d dE Assim a equação geral tridimensional da condução fica: τ ρ ∂ ∂ =+      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ +      ∂ ∂ ∂ ∂ T cq z T k zy T k yx T k x & 1.3 Para condutividade constante a Eq. 1.3 pode ser escrita τα ∂ ∂ =+ ∂ ∂ + ∂ ∂ + ∂ ∂ T k q z T y T x T 1 2 2 2 2 2 2 & 1.4 onde a quantidade α = k/ρc é chamada de difusividade térmica do material. Quanto maior o valor de α, mais rapidamente o calor irá se difundir através do material. Isto pode ser visto observando-se as quantidades que compõem α. Um valor elevado de α pode resultar tanto de um valor elevado da condutividade térmica quanto de um valor baixo da capacidade térmica ρc. Um valor baixo da capacidade térmica significa que menor quantidade de energia em trânsito através do material é absorvida e utilizada para elevar a temperatura do material; assim, mais energia encontra-se disponível para ser transferida. Nas deduções acima, a expressão da derivada x + dx foi escrita na forma de uma expansão de Taylor onde somente os dois primeiros termos da série foram considerados no desenvolvimento. Muitos problemas práticos envolvem somente casos especiais das equações gerais apresentadas acima. Como uma orientação pata desenvolvimento em capítulos futuros, é conveniente mostrar a forma reduzida da equação geral para alguns casos de interesse prático. - Fluxo de calor unidimensional em regime permanente (sem geração de calor) 0 2 2 = dx Td 1.5 BAC014 - 1a Prática - Determinação da condutividade térmica K - Fluxo de calor unidimensional em regime permanente com fontes de calor 0 2 2 =+ ∂ ∂ k q x T & 1.6 - Condução bidimensional em regime permanente sem fontes de calor 0 2 2 2 2 = ∂ ∂ + ∂ ∂ y T x T 1.7 1.3.1.1) Condutividade Térmica A Eq. 1-1 é a equação de definição para a condutividade térmica. Com base nesta definição, podem ser feitas medidas experimentais para a determinação da condutividade térmica de diferentes materiais. Tratamentos analíticos da teoria cinética podem ser usados para gases em temperaturas moderadamente baixas para antecipar com precisão os valores observados experimentalmente. Em alguns casos existem teorias para o cálculo da condutividade térmica em líquidos e sólidos, mas em geral nestas situações os conceitos não são muito claros, permanecendo várias questões em aberto. O mecanismo da condução térmica num gás é simples. A energia cinética de uma molécula é identificada com sua temperatura; assim, numa região de alta temperatura as moléculas têm velocidades maiores do que numa região de baixa temperatura. As moléculas estão em movimento contínuo ao acaso, colidindo umas com as outras e trocando energia e quantidade de movimento.Esta movimentação ao acaso das moléculas independe da existência de um gradiente de temperatura no gás. Se uma molécula se movimenta de uma região de alta temperatura para uma de baixa temperatura, ela transporta energia cinética para esta região de baixa temperatura do sistema perdendo esta energia através de colisões com moléculas de energia mais baixa. Foi dito que a unidade da condutividade térmica é watts por metro por grau Celsius [W/(m.oC)] no SI. Note que existe uma taxa de calor envolvida, e o valor numérico da condutividade térmica indica a rapidez com que o calor será transferido num dado material. Qual é a taxa de transferência de energia levando-se em consideração o modelo molecular discutido acima? Quanto mais veloz o movimento das moléculas, mais rapidamente a energia será transportada. Portanto, a condutividade térmica de um gás deve ser dependente da temperatura. Um tratamento analítico simplificado mostra que a condutividade térmica de um gás varia com a raiz quadrada da temperatura absoluta. (Convém lembrar que a velocidade do som em um gás varia com a raiz quadrada da temperatura absoluta kRTv = ; esta velocidade é aproximadamente a velociade média das moléculas.) O mecanismo físico da condução de energia térmica em líquidos é qualitativamente o mesmo dos gases; entretanto, a situação é consideravelmente mais complexa, uma vez que o espaçamento das moléculas é menor e os campos de força molecular exercem uma forte influência na troca de energia no processo de colisão. A energia térmica pode ser conduzida em sólidos de duas maneiras: vibração da grade e transporte por elétrons livres. Em bons condutores elétricos um grande número de elétrons move-se sobre a estrutura do material. Como estes elétrons podem transportar carga elétrica, podem também conduzir energia de uma região de alta temperatura para uma BAC014 - 1a Prática - Determinação da condutividade térmica K Aqui é conveniente introduzir um ponto de vista conceitual diferente para a lei de Fourier. A taxa de transferência de calor pode ser considerada como um fluxo, a combinação da condutividade térmica, espessura do material, e a área como uma resistência a este fluxo. A temperatura, e a função potencial, ou motora, para este fluxo de calor, e a equação de Fourier pode ser escrita elétricaa Resistênci potencial deDiferença calor de Fluxo = 2-4 que é uma relação semelhante à lei de Ohm na teoria de circuitos elétricos. Fig. 2-1 Transferência de calor unidimensional através de uma parede composta e analogia elétrica Fig. 2-2 Transferência de calor em série e em paralelo através de uma parede composta e a analogia elétrica. Na Eq. 2-1 a resistência a resistência térmica é ∆x/kA, e na Eq. 2.3 á soma dos três termos do denominador. Esta situação é esperada na Eq. 2.3 porque as três paredes lado a lado agem como três resistências térmicas em série. BAC014 - 1a Prática - Determinação da condutividade térmica K A analogia elétrica pode ser empregada para resolver problemas mais complexos envolvendo resistências térmicas em série e em paralelo. Um problema típico e o seu circuito análogo estão mostrados na Fig. 2-2. A equação do fluxo de calor unidimensional para este tipo de problema pode ser escrita ∑ ∆ = t total R T q 2-5 onde Rt são as resistências térmicas dos vários materiais. É interessante mencionar que em alguns sistemas como o da Fig. 2-2 pode resultar um fluxo de calor bidimensional se as condutividades térmicas dos materiais B, C e D forem muito diferentes. Nesses casos outras técnicas devem ser empregadas para a obtenção de uma solução. BAC014 - 1a Prática - Determinação da condutividade térmica K
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved