A Bíblia do Carro

A Bíblia do Carro

(Parte 1 de 6)

A BÍBLIA DO CARRO "Copyright (C) 2001-2002 - Direitos reservados e registrados pelo escritor Paulo G. Costa" w.mecatronicadegaragem.blogspot.com

Motor

O motor é a fonte de energia do automóvel. Converte a energia calorífica produzida pela combustão da gasolina em energia mecânica, capaz de imprimir movimento nas rodas. O carburante, normalmente constituído por uma mistura de gasolina e ar (a mistura gasosa), é queimado no interior dos cilindros do motor.

A mistura gasosa é formada no carburador ou calculada pela injeção eletrônica, nos motores mais modernos, e admitida nas câmaras de explosão. Os pistões, que se deslocam dentro dos cilindros, comprimem a mistura que é depois inflamada por uma vela de ignição. À medida que a mistura se inflama, expande-se, empurrando o pistão para baixo.

O movimento dos pistões para cima e para baixo é convertido em movimento rotativo pelo virabrequim ou eixo de manivelas o qual, por seu turno, o transmite às rodas através da embreagem, da caixa de câmbio, do eixo de transmissão e do diferencial. Os pistões estão ligados ao virabrequim pelas bielas. Uma árvore de cames, também conhecida por árvore de comando de válvulas, movida pelo virabrequim, aciona as válvulas de admissão e escapamento situadas geralmente na parte superior de cada cilindro. A energia inicial necessária para por o motor em movimento é fornecida pelo motor de arranque. Este engrena numa cremalheira que envolve o volante do motor, constituído por um disco pesado, fixado à extremidade do virabrequim ou árvore de manivelas. O volante do motor amortece os impulsos bruscos dos pistões e origina uma rotação relativamente suave ao virabrequim. Devido ao calor gerado por um motor de combustão interna, as peças metálicas que estão em contínuo atrito engripariam se não houvesse um sistema de arrefecimento. Para evitar desgastes e aquecimento excessivos, o motor inclui um sistema de lubrificação. O óleo, armazenado no cárter sob o bloco do motor, é obrigado a circular sob pressão através de todas as peças do motor que necessitam de lubrificação.

w.mecatronicadegaragem.blogspot.com

Basico

A estrutura do motor deve ser suficientemente rígida para poder suportar as elevadas pressões a que estão sujeitos os mancais do virabrequim e as demais peças internas. É constituída basicamente por duas partes ligadas por meio de parafusos: a superior chamada de cabeçote do motor e a inferior chamada de bloco do motor, que contém o virabrequim. Tanto o cabeçote como o bloco podem ser de ferro fundido, embora também se utilize o alumínio na sua fabricação por ser mais leve e permitir uma melhor dissipação do calor. Atualmente, quase todos os motores apresentam as válvulas no cabeçote. No cabeçote do motor existe, para cada cilindro uma câmara de explosão, um coletor de admissão, um coletor de escapamento, uma válvula de escapamento, uma válvula de admissão e um orifício com rosca para o alojamento da vela.

O motor recebe a mistura gasosa através das válvulas de admissão e expele os gases resultantes da combustão através das válvulas de escapamento. O mecanismo de abertura e fechamento das válvulas situa-se normalmente na parte superior do cabeçote do motor.

w.mecatronicadegaragem.blogspot.com

No bloco do motor encontram-se os cilindros e os mancais do virabrequim, no qual estão ligadas as bielas que, por sua vez, estão ligadas aos pistões. O bloco do motor pode ainda alojar a árvore de comando o qual comanda o abrir e o fechar das válvulas. Às vezes, a árvore de comando está alojada no cabeçote do motor. Tanto o cabeçote como o bloco do motor contém uma série de dutos denominados câmaras de água nos quais circula a água de arrefecimento.

w.mecatronicadegaragem.blogspot.com

Tempo de explosão w.mecatronicadegaragem.blogspot.com

A energia calorífica, resultante da combustão da mistura gasosa, converte-se em energia mecânica, por intermédio dos pistões, bielas e virabrequim. O rendimento do motor depende da quantidade de energia calorífica que é transformada em energia mecânica. Quanto maior for o volume da mistura de gasolina e ar admitida no cilindro e a compressão dessa mistura, maior será a potência específica do motor. A relação entre os volumes da mistura gasosa no cilindro, antes e depois da compressão, é designada por taxa ou relação de compressão. Quando a faísca da vela de ignição inflama a mistura comprimida, a explosão deve propagar-se rapidamente, progressiva e uniformemente na cabeça do pistão que limita a câmara de explosão. Se a taxa de compressão for demasiada elevada para o tipo de gasolina utilizada, a combustão não será progressiva. A parte da mistura que se encontrar mais afastada da vela de ignição vai se inflamar violentamente ou detonará. Quando sucede tal fato, ou quando o motor tem muito avanço, costumase dizer que o motor “grila” ou está adiantado. Esta detonação poderá causar um aquecimento excessivo, além de perda de rendimento e, caso persista, danificará o motor. O excessivo aquecimento, e a diminuição de rendimento num motor pode resultar na pré-ignição (auto-ignição), ou seja, inflamação de parte da mistura antes de soltar a faísca, devido à existência de velas defeituosas ou de valor térmico inadequado ou até mesmo à presença – na câmara de explosão – de depósitos de carvão que se mantêm continuamente incandescentes. A pré-ignição, tal como a detonação, pode causar graves danos e reduz a potência do motor. Os motores de automóveis, em sua grande maioria, têm um ciclo de funcionamento de 4 tempos, ou ciclo Otto. Como as válvulas de admissão e escapamento devem abrir-se uma vez em cada ciclo, a árvore de comando que as aciona gira a metade da velocidade de rotação do virabrequim, a qual completa duas rotações em cada ciclo. Também existem motores de 2 tempos nos quais se dá uma explosão cada vez que o pistão desce, ou seja, uma vez em cada rotação do virabrequim. Este ciclo, basicamente mais simples do que o ciclo de 4 tempos, é muito utilizado em motocicletas.

w.mecatronicadegaragem.blogspot.com

Força motriz

Ao produzir-se a combustão (explosão) da mistura de gasolina e ar, os pistões impulsionados pela expansão dos gases originam a força motriz do motor. Num automóvel de dimensões médias, quando o motor trabalha à velocidade máxima, cada pistão poderá chegar a efetuar 100 cursos pôr segundo.

Devido a esta rápida sucessão de movimentos ascendentes e descendentes, os pistões deverão ser resistentes, embora fabricados com material leve - uma liga de alumínio - na maioria dos automóveis modernos.

w.mecatronicadegaragem.blogspot.com

Os anéis dos pistões vedam a folga existente entre os pistões e a parede do cilindro. Os anéis de compressão, que normalmente são dois, evitam que os gases passem do cilindro para o Carter, enquanto um terceiro anel raspador de óleo remove o excesso de óleo lubrificante das paredes do cilindro e devolve-o ao Carter.

A força motriz é transmitida dos pistões e virabrequim que, juntamente com as bielas, a converte em movimento rotativo. As bielas são normalmente de aço forjado.

A parte superior da biela, denominada pé da biela, está fixada ao pistão por meio de um pino que permite à biela oscilar lateralmente, enquanto se move para cima e para baixo. O pino do pistão é normalmente oco, a fim de pesar menos e encontrase fixado ao pistão por meio de travas ou prensados. A parte inferior da biela (a cabeça da biela) está parafusada ao virabrequim fazendo uma trajetória circular, enquanto o pé da biela segue o movimento de vai e vem do pistão. Uma cabeça da biela pode terminar numa sessão horizontal ou oblíqua.

w.mecatronicadegaragem.blogspot.com

O volante do motor, disco pesado e cuidadosamente equilibrado montado na extremidade do virabrequim do lado da caixa de câmbio, facilita o funcionamento suave do motor, já que mantém uniforme o movimento de rotação do virabrequim. Os bruscos movimentos alternativos de subida e descida dos pistões ocorrem enquanto a inércia do volante mantém a uniformidade do movimento rotativo.

A ordem de ignição dos cilindros também influi grandemente na suavidade da rotação do virabrequim. Considerando o cilindro mais próximo do ventilador número 1, a ordem de explosão num motor de 4 cilindros é normalmente 1, 3, 4, 2 ou 1, 2, 4, 3 para permitir uma distribuição equilibrada dos esforços no virabrequim.

O desenvolvimento de pistões bi metálicos de dilatação controlada é uma das mais importantes e menos conhecidas inovações dos motores atuais. Este tipo de pistão, graças a inserções de aço no próprio alumínio do corpo do pistão, assegura uma maior estabilidade dimensional. Em outras palavras, reduzem as deformações do pistão como conseqüência das trocas de temperatura.

Esta vantagem permite reduzir as tolerâncias ou folgas entre pistão e cilindro, melhorando assim a vedação do conjunto e a compressão efetiva.

Outro detalhe importante no conjunto alternativo é a redução do peso do pistão e da superfície de contato com o cilindro. Os pistões de saia ultracurta e peso mínimo permitem sensíveis melhoras ao reduzir-se, por um lado, as forças de inércia que equivalem a consumo de energia – diminuindo-se, ao mesmo tempo, os atritos ou resistências passivas na fricção do pistão com o cilindro. Estas vantagens foram complementadas, em muitos casos, com anéis de materiais de baixo coeficiente de atrito e camisas de cilindro de materiais ou acabamentos especiais desenvolvidos com a mesma finalidade de reduzir resistências passivas.

Bloco do motor

Os blocos são, na sua maioria, de ferro fundido, material resistente, econômico e fácil de trabalhar na produção em série. A resistência do bloco pode ser aumentada, se for utilizada na sua fabricação uma liga de ferro fundido com outros metais.

w.mecatronicadegaragem.blogspot.com

Alguns blocos de motor são fabricados com ligas de metais leves, o que diminui o peso e aumenta a dissipação calorífica; são, contudo, de preço mais elevado. Como são também mais macios, para resistir aos atritos dos pistões, os cilindros desses blocos têm de ser revestidos com camisas de ferro fundido. A camisa (câmara) de água – conjunto de condutores que através dos quais circula a água de resfriamento dos cilindros – é normalmente fundida com o bloco, do qual faz parte integrante.

w.mecatronicadegaragem.blogspot.com

Cabeçote w.mecatronicadegaragem.blogspot.com

Podem surgir rachaduras no bloco, em conseqüência da pressão causada pelo aumento de volume da água ao congelar, ou eboluir. Por vezes, essa dilatação pode chegar a desalojar os selos que vedam os furos resultantes da fundição. Os cilindros podem ser dispostos numa só fila em sentido longitudinal (motores em linha), em duas filas, formando um ângulo entre si (motores em V), ou horizontalmente e em duas filas, uma de cada lado do virabrequim (motor de cilindros horizontais opostos). Nos motores de 4 e 6 cilindros estes, na sua maioria, estão dispostos em linha. Quanto maior for o número de cilindros de um motor, mais suave será o seu funcionamento, sobretudo a baixa rotação. Na maioria dos automóveis de grande cilindrada (6 ou 8 cilindros) recorre-se à disposição em V. São poucos, em termos de porcentagem, os motores que utilizam o sistema de cilindros horizontais opostos.

As válvulas de escape são elementos sujeitos, em todos os motores, a solicitações térmicas realmente elevadas. Os fabricantes, ao projetarem os cabeçotes e as câmaras de compressão, levaram em consideração esse problema, contornando-o mediante uma rígida refrigeração da zona do cabeçote onde estão inseridas as guias de válvulas e aumento também a áreas de assento da cabeça da válvula no cabeçote para facilitar, assim, a transmissão térmica. E, mesmo assim, em motores de alta performance, o problema continua sendo difícil e nem sempre de solução possível, ainda que se empreguem os melhores materiais e tratamentos na fabricação de válvulas. As válvulas refrigeradas a sódio constituem a resposta da técnica a este problema. A diferença das válvulas normais, que são maciças, as refrigeradas a sódio são ocas, abrigando em seu interior uma determinada quantidade de sódio. Quando a cabeça da válvula esquenta, o sódio existente no interior da haste se funde e circula ao longo de toda a cavidade da válvula transportando eficazmente o calor desde a cabeça da válvula até o pé da mesma. As válvulas refrigeradas a sódio permitem reduzir a temperatura na cabeça de cerca de 800°C, valor normal em válvulas convencionais, a até menos de 600°C.

Comando de válvulas

A distribuição, ou seja, o sistema de comando das válvulas é concebido para que cada uma delas abra e feche no momento apropriado do ciclo de 4 tempos, se mantenha aberta o período de tempo necessário para possibilitar uma boa w.mecatronicadegaragem.blogspot.com admissão da mistura gasosa, a completa expulsão dos produtos da combustão e funcione suave e eficientemente nos mais variados regimes de rotação do motor.

Há vários processos para atingir estes objetivos. No sistema de balancins acionados por hastes impulsoras os tuchos recebem movimento de uma árvore de comando de válvulas situada no interior do bloco. O virabrequim aciona a árvore de comando de válvulas por intermédio de uma corrente, ou por um conjunto de engrenagens ou ainda por correia dentada, numa relação 2:1, ou seja, enquanto o virabrequim dá duas voltas, a árvore de comando das válvulas completa uma. Para um bom funcionamento, as válvulas devem, ao fechar, ajustar-se perfeitamente às suas sedes. Para tal, deve existir uma folga entre a válvula fechada e o seu balancin. Esta folga, que normalmente é maior na válvula de escapamento do que na de admissão, tem em conta a dilatação da válvula quando aquecida.

w.mecatronicadegaragem.blogspot.com

O sistema de ignição deve soltar uma faísca em cada vela no momento preciso, de acordo com a distribuição que faz abrir e fechar as válvulas no momento exato. O distribuidor, que funciona sincronizado com as válvulas, tem por função distribuir a corrente de alta tensão até às velas e é normalmente acionado por engrenagens a partir da árvore de comando ou do vilabrequim. Os motores mais modernos não possuem distribuidores e esse sistema se faz eletronicamente. A árvore de comando das válvulas está assentada no bloco sobre três ou cinco apoios. Os excêntricos da árvore de comando das válvulas estão dispostos de modo a assegurar a ordem de ignição.

Os projetistas de motores buscam a redução do peso dos componentes da distribuição, a fim de obter um aumento de duração e rendimento em motores funcionando a elevados regimes de rotação. Com este objetivo, utilizam uma ou duas árvores de comando de válvulas no cabeçote. Nas versões mais modernas com 16 e24 válvulas pode-se utilizar até mais comandos. A ação destas árvores de comando das válvulas sobre as válvulas é logicamente mais direta, dado que nela intervêm menos peças do que no sistema de árvore de comando das válvulas no bloco. Um processo simples de transmitir o movimento do virabrequim à árvore de comando das válvulas no cabeçote consiste na utilização de uma corrente, contudo, uma corrente comprida terá tendência a vibrar, a não ser que apresente um dispositivo para mante-la tensa. Na maior parte das transmissões por corrente utiliza-se, como tensor (esticador), uma tira de aço comprida ligeiramente curva, por vezes revestida de borracha. Uma mola helicoidal mantém o tensor de encontro à corrente. Um outro tipo de tensor consiste num calço de borracha sintética ligado a um pequeno pistão sujeito a uma ação de uma mola acionada por pressão de óleo. Também se utiliza um braço em cuja extremidade se encontra uma engrenagem dentada livre (ou “louca”) que engrena na corrente, mantendo-a esticada por uma mola. Alguns automóveis de competição apresentam transmissões por engrenagens entre a árvore de comando de válvulas e o virabrequim. Estes tipos de transmissão são, contudo, muito ruidosos. Uma das transmissões mais recentes para árvores de comando de válvulas no cabeçote utiliza uma correia exterior dentada de borracha. Este tipo de correia, normalmente isento de lubrificação, é fabricado com borracha resistente ao óleo. Embora tenha sido usual o emprego de balancins junto à árvore de comando para acionar as válvulas, é tendência atual eliminar os balancins e colocar as válvulas diretamente sob a ação dos eixos excêntricos. Algumas árvores de comando de válvulas no cabeçote utilizam tuchos hidráulicos, que são auto reguláveis e funcionam sem folga, sendo assim eliminado o ruído característico de batimento de válvulas. Um tucho hidráulico compõe-se de duas partes, umas das quais desliza no interior da outra; o óleo, sob pressão, faz com que a haste aumente o comprimento e anule a folga quando o motor se encontra em funcionamento. MAIS DE DUAS VÁLVULAS POR CILINDRO O que há de mais moderno em sistemas de distribuição do comando de válvulas, consiste na utilização de 3, 4 e até 5 válvulas por cilindro.

(Parte 1 de 6)

Comentários