A Bíblia do Carro

A Bíblia do Carro

(Parte 2 de 6)

w.mecatronicadegaragem.blogspot.com

Quase sempre acionadas diretamente pelos próprios excêntricos da árvore do comando de válvulas, sem intervenção dos balancins. Esta técnica permite um abastecimento perfeito dos cilindros, especialmente em altas rotações, o que se traduz em rendimento e baixo consumo.

Disposições

Um motor com um só cilindro é a solução mais simples de um motor a 4 tempos. Essa solução não é, contudo, adequada para um automóvel, devido à irregularidade do torque resultante de um só tempo de explosão em cada duas rotações do virabrequim, o que provocaria vibrações.

A irregularidade do torque pode ser compensada pela energia armazenada num volume pesado; tal solução, porém, é insuficiente para permitir que um motor a 4 tempos trabalhe suavemente a baixa rotação. Não existe nenhum processo simples de contrabalançar o movimento alternativo de um motor de cilindro único (monocilíndrico).

Para funcionar com maior suavidade, o motor deve possuir, no mínimo, 2 cilindros, ocorrendo assim uma explosão em cada rotação do virabrequim. Quase todos os automóveis têm, pelo menos, 4 cilindros para que nos seus motores ocorra um tempo de explosão em cada meia rotação do virabrequim.

Torque (binário-motor) e equilíbrio – num motor de 4 cilindros em linha os tempos de explosão são igualmente espaçados entre si, o que origina um binário razoavelmente suave. A vibração produzida é, em grande parte, eliminada pelos apoios do motor, que são elásticos. O torque de um motor de 4 cilindros em V pode ser tão regular como o de um motor de 4 cilindros em linha. Aquela disposição, porém, não permite um equilíbrio tão eficaz, seja qual for o ângulo formado pelos grupos de cilindros.

w.mecatronicadegaragem.blogspot.com

Assim o motor de 4 cilindros em V produz vibrações que tem de ser reduzidas mediante a incorporação de um eixo suplementar provido de contra peso, destinado a eliminar vibrações do conjunto.

O motor de 4 cilindros horizontais opostos é mais compacto e mais equilibrado que o motor em linha. Em certos modelos de automóveis, contudo, as vantagens desta disposição são anuladas pelos problemas que ela levanta quanto à dificuldade de acesso, em caso de reparações. Os motores de 6 cilindros em linha proporcionam melhor equilíbrio.

O motor de 6 cilindros em V é teoricamente menos suave do que o de 6 cilindros em linha, ambos, porém, são equivalentes no que se refere à regularidade do binário. O mesmo acontece com o motor de 6 cilindros horizontais opostos, que trabalha suavemente, mas é dispendioso. O motor de 8 cilindros em V (V8) é a mais utilizada das variantes de motores de 8 cilindros. Trata-se de um motor compacto e bem equilibrado, com um torque regular.

Motor de 6 cilindros em linha

O motor de 6 cilindros em linha, apesar de mais comprido e ligeiramente mais pesados que o motor de 4 cilindros em linha, apresenta duas vantagens principais: um binário-motor que é consideravelmente mais uniforme, devido à sobreposição dos sucessivos tempos de explosão, e um melhor equilíbrio mecânico, que reduz ao mínimo as vibrações. Este tipo de motor tem o virabrequim apoiado em 4 ou 7 mancais , o que proporciona grande resistência e evita a flexão.

Disposição de cilindros horizontais opostos

Neste tipo de motor, os cilindros estão dispostos em duas filas, uma de cada lado do virabrequim Esta disposição permite montar um virabrequim mais curto que a de um motor de 4 cilindros em linha, bastando 3 pontos de apoio para a mesma. Um motor de 4 cilindros horizontais opostos é mais aconselhável, devido às suas formas e dimensões, para a traseira do automóvel. Em qualquer motor de 4 cilindros com esta disposição, a uniformidade do torque é aceitável, quer nos w.mecatronicadegaragem.blogspot.com motores de 4 cilindros, quer nos de 6. Esta disposição permite um equilíbrio mecânico excelente; o movimento de um componente num sentido é equilibrado pelo movimento do componente homólogo em sentido contrário.

Três tipos de motor em V

Os motores em V apresentam, como principal vantagem o fato de o conjunto poder ser mais curto que o dos motores em linha, podendo, portanto, o seu virabrequim ser mais curto e, conseqüentemente, mais rígido, o que permite ao motor trabalhar mais suavemente a elevado regime de rotação. O motor V8 necessita apenas de quatro mancais de biela desde que estes se encontrem dispostos de modo a formar entre si um ângulo de 90º e sejam suficientemente compridos para que em cada um possam trabalhar, lado a lado, duas bielas. A árvore de manivelas necessita de um mancal de apoio entre cada par de mancais de bielas. Os motores V6 não são de funcionamento tão suave como os V8, que são extremamente bem equilibrados e proporcionam quatro explosões espaçadas igualmente entre si em cada rotação do virabrequim.

O motor V6 tem um mancal de biela para cada biela. Com um tempo de explosão em cada terço de rotação e com os mancais de biela dispostos a intervalos de 60 graus, o motor é de funcionamento suave e de equilíbrio razoável.

w.mecatronicadegaragem.blogspot.com

No motor V4 é necessário um eixo equilibrador adicional, que roda a metade do número de rotações do virabrequim. Em outros modelos, o ângulo do V pode ser reduzido até cerca de 10 %.

Câmaras de explosão

O rendimento de um motor à explosão depende, em grande parte, da forma das câmaras de explosão. Para ser eficaz, uma câmara de explosão, deve ser de tal modo compacta que a superfície das suas paredes – através das quais o calor se dissipa para o sistema de resfriamento – seja mínima.

Como regra, considera-se que a forma ideal de uma câmara de explosão seja esférica, com o ponto de ignição situado no centro, que resultaria numa combustão uniforme da mistura gasosa em todas as direções e num mínimo de perda de calor através das paredes. Sendo tal forma impraticável num motor de automóvel, o conceito mais aproximado, neste caso, é o de uma calota esférica. As formas das câmaras de explosão, que habitualmente apresentam os motores de automóveis, são de quatro tipos: hemisférica, em banheira, em cunha (ou triangular) e aberta na cabeça do pistão, todas elas com válvulas na cabeçote. Os tipos de câmara de válvulas lateral ou de cabeça em L e em F estão atualmente ultrapassados.

A cabeça hemisférica é utilizada principalmente em motores de elevado rendimento, já que a sua fabricação é dispendiosa. Na maioria dos automóveis atuais, as câmaras de explosão apresentam uma das quatro formas principais, compatíveis com motores de alta taxa de compressão.

O sistema de válvula lateral utilizado nos primeiros automóveis é o mais econômico. Contudo, neste sistema, a forma da câmara limita a taxa de compressão a pouco mais de 6:1, valor muito baixo para se conseguir bom rendimento ou economia de gasolina. O sistema de cabeça em F consiste numa combinação de válvulas laterais e à cabeça. As válvulas de escapamento são montadas no bloco do motor e as de admissão na cabeça.

w.mecatronicadegaragem.blogspot.com

Uma das formas mais eficazes e viáveis de câmara de explosão é a clássica em calota esférica, cuja base é formada pela cabeça do pistão. As válvulas inclinadas formam entre si um ângulo de 90º, ocupando a vela uma posição central entre ambas. Esta disposição, clássica pela sua simetria, encurta a distância que a chama deve percorrer entre a vela e a cabeça do pistão, assegurando uma boa combustão. É utilizada em motores de elevado rendimento, sendo o ângulo entre as válvulas inferior a 90º. A câmara hemisférica implica na utilização de uma ou duas árvores de comando no cabeçote ou então de uma árvore de comando lateral com um complexo sistema de balancins e hastes impulsoras para o acionamento das duas filas de válvulas. A sua fórmula facilita a admissão da mistura gasosa que penetra no cilindro por um dos lados do motor e, a expulsão dos gases da combustão, pelo lado contrário. Também proporciona mais espaço para os dutos de admissão de grande diâmetro, podendo estes serem dispostos de modo que a mistura penetre na câmara facilmente e com a devida turbulência.

w.mecatronicadegaragem.blogspot.com

O adequado fluxo de gases que as suas grandes válvulas permitem, faz com que a cabeça hemisférica proporcione um notável rendimento volumétrico, ou seja, um volume de mistura gasosa admitida igual ao volume do cilindro, sob determinadas condições atmosféricas. Contudo, devido à tendência atual para a fabricação de cilindros com maiores diâmetros e cursos dos pistões mais reduzidos, as válvulas de um motor comum em linha apresentam o diâmetro suficiente para satisfazer as necessidades normais. Tais válvulas não exigem árvores de comando ou balancins especiais, o que torna menos dispendioso na fabricação do motor. Câmaras de explosão em banheira e em cunha Para que a chama percorra um pequeno trajeto, são muito utilizadas, nos motores de válvula na cabeça, as câmaras de explosão em forma de banheira invertida e em cunha A câmara de explosão em banheira, de forma oval, apresenta as válvulas de admissão e de escapamento colocadas verticalmente na parte superior e a vela na parte inclinada. Na câmara de explosão, em forma de cunha, as válvulas encontram-se no lado inclinado, de maiores dimensões, situando-se a vela no lado mais curto. Ambas as câmaras de explosão permitem a instalação de uma única árvore de comando lateral, com as hastes impulsoras para os balancins em linha. Em alguns motores, as válvulas destas câmaras podem ser acionadas por uma única árvore de comando no cabeçote. Câmara aberta na cabeça do pistão. Câmara aberta na cabeça do pistão Existe um tipo de câmara moderno de explosão situado na cabeça do pistão, pelo que, neste caso, o cabeçote do motor se apresenta plano. Este tipo de câmara é apropriado para taxas de compressão elevadas e utilizado principalmente em motores de competição, nos quais o diâmetro do pistão é superior ao seu curso. Quando o pistão sobe, na fase final do tempo de compressão, a borda superior do pistão provoca uma turbulência, sob a forma de jato intenso na mistura gasosa da periferia do pistão para o centro da câmara, dando origem a uma excelente combustão sem detonação. A câmara, pelo fato de apresentar a forma de taça e se encontrar na cabeça do pistão, conserva o calor contribuindo, desta forma, para uma mais rápida vaporização da mistura. Válvula lateral – As câmaras de explosão, num motor de válvulas laterais, não têm uma boa taxa de compressão que é uma das condições w.mecatronicadegaragem.blogspot.com

fundamentais para que se produza uma boa combustão. As válvulas estão alinhadas num dos lados do cilindro situando-se, sobre estas, as câmaras de explosão. A parte superior da câmara forma um declive sobre o cilindro, dando origem a um pequeno espaço entre a câmara e a cabeça do pistão no P. M. S., formando uma pequena lâmina de compressão.

Mancais

Os mancais são utilizados para reduzir o atrito e servir de apoio a todas as peças giratórias de um automóvel, sejam estas eixos ou rodas sobre eixos.

Os mancais dividem-se em dois tipos principais: os lisos – que englobam os formados por duas meias buchas, capas, ou bronzinas, e as buchas – e os rolamentos, que podem ser de esferas, de roletes ou de agulhas.

Mancais de duas meias-buchas – Um apoio para peças giratórias, quando constituído por duas partes iguais, para facilidade de montagem, é designado por mancal de duas meias buchas. Estes são de metal antifricção e também designados por capas ou bronzinas.

Mancais de duas meias-buchas desmontáveis – As bronzinas do virabrequim são formados por duas partes iguais de aço revestido com metal antifricção. As bronzinas apresentam um sulco que permite a passagem de óleo para as bronzinas das cabeças das bielas através do virabrequim. Cada bronzina tem forma semicircular e consiste numa carcaça de aço, revestida interiormente por uma liga de metal macio, com propriedades para reduzir o atrito. Os mancais de apoio do virabrequim estão alojados no bloco, situando-se os da biela nas cabeças das mesmas As bronzinas devem ter um sólido e perfeito contato no seu alojamento nos mancais, não só para garantir o seu apoio, como também para que o calor gerado pela fricção se dessipe da bronzina, por condução evitando assim o sobreaquecimento. O revestimento interior da capa pode ser composto por várias ligas metálicas, como por exemplo, o metal branco, a liga de cobre-chumbo ou estanhoalumínio.

w.mecatronicadegaragem.blogspot.com

Uma das extremidades do virabrequim está submetida ao impulso proveniente da pressão da embreagem e, em alguns casos, da reação resultante das engrenagens que movem os órgãos auxiliares. Se este impulso não fosse controlado causaria deslocamentos axiais no virabrequim o que, além de originar ruídos, provocaria desgastes. Para eliminar tal inconveniente, um dos apoios do virabrequim é rodeado por arruelas axiais de encosto, normalmente conhecidas por meias-luas do virabrequim, constituídas por finos segmentos de aço revestidos de metal antifricção, que mantém o virabrequim na sua posição, anulando por encosto qualquer reação evidente à deslocação axial. Uma bomba faz com que o óleo circule, sob pressão, por uma série de canais existentes no bloco e penetre nos mancais do virabrequim através de um orifício aberto em cada bronzina. Este orifício comunica com um sulco existente em torno da face interior da bronzina, através do qual o óleo é distribuído. Parte do óleo sob pressão penetra pelos furos abertos no virabrequim e lubrifica os mancais das bielas. A folga entre o eixo e os apoios, que nunca deve exceder 0,1 m, variando para menos conforme o fabricante, regula a circulação de óleo e, em grande parte, a quantidade de óleo impulsionada para os pistões e cilindros. O orifício por onde penetra o óleo que lubrifica um mancal situa-se próximo do ponto onde a pressão exercida sobre esta é mínima, isto é, no local onde é maior a folga entre o mancal e o eixo. Ao rodar, o eixo arrasta o óleo em volta do mancal formando um calço de óleo. A pressão autogerada no calço de óleo é bastante superior à pressão resultante da ação da bomba de óleo nas tubulações de alimentação, evitando assim o contato das superfícies metálicas entre si, mesmo quando o mancal é sujeito a elevadas cargas. Mancais de bucha cilíndrica – Os mancais lisos, quando constituídos por um cilindro formado por uma só peça, são designados simplesmente por buchas. São utilizados, por exemplo, nos balancins e nos pés das bielas As buchas mais simples são totalmente fabricadas do mesmo metal ou liga, normalmente o bronze. A bucha é montada com interferência, ou seja, introduzida sob pressão no seu alojamento. Se a alimentação de óleo não for suficiente, a bucha cilíndrica pode ser revestida com uma matéria plástica como, por exemplo o teflon. Em certos casos, são utilizadas buchas de metal poroso e outros materiais anti fricção. Rolamentos – Os rolamentos de esferas, de roletes ou de agulhas são, entre todos os apoios, o de menor coeficiente de atrito sendo, no entanto, também os de preço mais elevado. São utilizados em órgãos auxiliares dos motores de automóveis como a bomba de água e o alternador e, em alguns motores de competição como também em sistemas de transmissão para árvores de comando no cabeçote.

(Parte 2 de 6)

Comentários