A Bíblia do Carro

A Bíblia do Carro

(Parte 4 de 6)

Válvula PCV

Durante a operação do motor, gases que escapam da câmara de combustão são acumulados no cárter. O acúmulo destes gases prejudiciais reduzirão a vida do motor consideravelmente. Estes gases possuem emissões prejudiciais tais como hidrocarbonetos, monóxido de carbono e óxidos de nitrogênio e são uma fonte de poluição do ar.

O sistema de Ventilação Positiva do Cárter (PVC) é utilizado para remover estes gases do cárter e direcioná-los de volta para a câmara de combustão, onde os mesmos podem ser queimados, em vez de liberá-los para a atmosfera. Este é um método mais eficiente de ventilação e é necessário para atender as normas atuais de emissão. A maioria dos sistemas usam uma válvula mecânica para controlar a velocidade do fluxo, enquanto outros usam um conjunto separador de óleo. A tensão da mola da válvula é projetada especificamente para cada motor.

A tensão da mola controla o fluxo de vapores do cárter do motor. Isto impede a formação de pressão no cárter e o consumo excessivo de óleo.

O ar fresco do filtro de ar é suprido ao cárter. Lá, o mesmo é misturado com gases que escapam do processo de combustão. A mistura de ar fresco e gases passa através da válvula do PCV para o coletor de admissão. Deste ponto, a mesma circula dentro do motor e é queimada no processo de combustão.

Falha da válvula do PVC ou uma aplicação incorreta pode causar a formação de lama no cárter, pressões incorretas no cárter e problemas no desempenho do motor.

Válvula EGR w.mecatronicadegaragem.blogspot.com

Os sistemas EGR têm sido usados em veículos há muitos anos. O principal objetivo do sistema é controlar as temperaturas da câmara de combustão. Isto é feito para reduzir a quantidade de óxidos de Nitrogênio (Nox) no escapamento. Embora o EGR seja necessário para controlar emissões de Nox, o mesmo também afeta a eficiência volumétrica.

A válvula EGR linear propicia uma ligação entre a admissão de ar e o sistema de escapamento. Normalmente, o motor puxa ar através do corpo de borboleta para o coletor de admissão. A válvula EGR linear é colocada numa posição tal que, quando a mesma é aberta, um pouco de gases de escapamento flui também para a admissão.

Conforme o pistão se move para baixo no curso de admissão, a combinação de ar/combustível e escapamento entra na câmara de combustão. Embora o volume de gases entrando na câmara de combustão seja o mesmo, haverá menos ar para queimar quando o combustível é inflamado, de modo que a temperatura e a pressão do cilindro diminuirão. Menos oxigênio e temperaturas mais baixas equivalem a uma queda nos níveis de Nox.

Visto que a pressão no cilindro é quem empurra o pistão para baixo, o desempenho do motor pode ser afetado pela diminuição na pressão do cilindro. Atualmente existem motores que não utilizam válvulas EGR. Isto é obtido de uma combinação de projeto de motor e calibrações computadorizados de controle de alimentação e tempo. Com a sobreposição apropriada da válvula, as temperaturas do cilindro são controladas e as emissões de Nox, reduzidas. A válvula EGR encontra-se localizada num tubo entre os coletores de escape e de admissão. Quando é aplicado vácuo pela válvula reguladora de vácuo

EGR, o diafragma abre a sede da válvula contra a pressão de uma mola e permite a entrada dos gases de escape. A sede da válvula é fechada novamente pela pressão da mola quando o vácuo deixa de ser aplicado.

w.mecatronicadegaragem.blogspot.com

A válvula EGR é aberta de acordo com as condições de funcionamento do motor e os valores de regulagem para recirculação dos gases de escape estão memorizados no módulo de injeção eletrônica.

Válvula reguladora de vácuo EGR

A válvula reguladora de vácuo EGR encontra-se localizada no tubo de vácuo que vai do coletor de admissão para a válvula EGR.

Quando a válvula reguladora de vácuo EGR fica sem alimentação de tensão, o vácuo atua sobre o prato metálico da válvula que se encontra pressionado contra a sede da válvula pela força da mola, e o vácuo é reduzido pela entrada do ar fresco. Este ar passa através de um filtro de espuma no alojamento superior da válvula reguladora de vácuo. O vácuo restante não é suficiente para abrir a válvula EGR.

A válvula reguladora de vácuo é desacoplada através de um ponto de estrangulamento na ligação do tubo flexível do tubo de vácuo para o coletor de admissão, de forma que a pressão possa ser regulada. Quando a válvula reguladora de vácuo é acionada por impulsos de massa, através do módulo de injeção eletrônica, o campo magnético da bobina aumenta a força de fechamento da válvula de sede plana, dado que o prato em ferro da válvula é atraído magneticamente. Isto permite a criação de um vácuo que atua sobre o diafragma da válvula EGR, abrindo-a.

O vácuo na válvula reguladora de vácuo pode ser controlado pelos impulsos de massa variáveis. Deste modo, a válvula EGR é aberta de forma que a recirculação dos gases de escape no circuito fechado esteja de acordo com os valores específicos no mapa memorizado no módulo de controle do motor.

Tanque

Atualmente os tanques de gasolina estão montados o mais longe possível do motor, ou seja, na parte de trás do veículo quando este tem o motor à frente, na parte da frente quando o motor está na parte de trás, exceto um ou outro caso. Esta disposição reduz o perigo de incêndio e permite a localização do tanque a um nível mais baixo que o do compartimento do motor. Quanto mais baixo estiver o tanque – bastante pesado, quando cheio -, menos afetará a estabilidade do automóvel.

O interior de alguns tanques encontra-se dividido para evitar o deslocamento do combustível, quando o automóvel freia ou descreve uma curva, e é normalmente tratado para não enferrujar devido à condensação da umidade. Os tanques de gasolina eram normalmente metálicos e atualmente tem se usado muito o plástico. A sua capacidade varia entre 18 Lts., e 115 Lts., segundo o modelo do automóvel e as características do motor.

Atualmente os tanques de gasolina estão montados o mais longe possível do motor, ou seja, na parte de trás do veículo quando este tem o motor à frente, na parte da frente quando o motor está na parte de trás, exceto um ou outro caso.

Esta disposição reduz o perigo de incêndio e permite a localização do tanque a um nível mais baixo que o do compartimento do motor. Quanto mais baixo estiver o tanque – bastante pesado, quando cheio -, menos afetará a estabilidade do automóvel.

w.mecatronicadegaragem.blogspot.com

O interior de alguns tanques encontra-se dividido para evitar o deslocamento do combustível, quando o automóvel freia ou descreve uma curva, e é normalmente tratado para não enferrujar devido à condensação da umidade. Os tanques de gasolina eram normalmente metálicos e atualmente tem se usado muito o plástico. A sua capacidade varia entre 18 Lts., e 115 Lts., segundo o modelo do automóvel e as características do motor.

Em regra, um tanque cheio permite à maioria dos automóveis percorrer normalmente um mínimo de 320 km. Alguns automóveis têm um tanque de combustível de reserva; outros dispõem de uma luz de aviso que se acende quando o nível de gasolina está muito baixo. O tubo de enchimento de um tanque deve ter a largura suficiente para admitir o fluxo de combustível à velocidade a que este é debitado pelas bombas dos postos de gasolina e para permitir a saída do ar do interior do tanque à medida que esse vai se enchendo. Os tanques apresentam tubos de respiro no tampão para permitir a entrada de ar no seu interior, conforme o combustível vai sendo consumido, a fim de evitar a formação do vácuo.

Canister

Hidrocarbonetos são liberados do tanque de combustível na forma de vapores aromáticos. Os níveis de emissão evaporativa são afetados pelo tipo de combustível utilizado, pela integridade das linhas e do recipiente de vapor (cânister), bem como pela capacidade da tampa do tanque de combustível para vedar. Portanto, deve existir um sistema para armazenar os vapores liberados do combustível.

w.mecatronicadegaragem.blogspot.com

Vapores de gasolina são acumulados no tanque de combustível do veículo. Se liberados para a atmosfera, hidrocarbonetos (HC) também seriam liberados para a atmosfera. De modo a reduzir as emissões de HC da evaporação de combustível, os vapores são direcionados para um recipiente (cânister) contendo carvão ativado.

Bomba de combustível

A bomba de gasolina torna-se necessária num sistema de alimentação, já que o carburador, através do qual passa toda a gasolina, fica normalmente a um nível mais elevado que o tanque e bastante afastado deste.

Existem dois tipos de bombas: as mecânicas, que se situam necessariamente no compartimento do motor, pois são acionadas por este e elétricas, instaladas normalmente próximo do tanque, afastadas do motor e do calor por este liberado.

Mecânica

Consiste numa câmara dividida por um diafragma. A parte superior contém um filtro e um copo de sedimentação e apresenta duas válvulas com molas para regular o fluxo da gasolina.

Na parte inferior encontra-se uma mola que regula a pressão de alimentação da gasolina e uma haste de comando (braço ou alavanca) acionada pela árvore de comando das válvulas. O diafragma é alternadamente impelido para baixo pela haste e para cima pela mola. Quando o carburador está cheio e a válvula de agulha fechada, não se verifica qualquer passagem de gasolina e o diafragma permanece na sua posição inferior. Em conseqüência, a haste de comando oscila sem acionar o w.mecatronicadegaragem.blogspot.com diafragma. As bombas mecânicas são muito eficazes; contudo, funcionam apenas com o motor trabalhando e apesar de isolados, estão sujeitos a ação do calor do motor.

Elétrica

As bombas elétricas tem o mesmo princípio das bombas mecânicas, bombear combustível. Existem duas posições onde são colocadas, internamente, no tanque de combustível e externamente, nas tubulações que levam a gasolina até o motor. Quanto aos tipos de bombas temos: de roletes e paletas.

Filtro de ar

Os automóveis modernos apresentam, à entrada do carburador, um filtro de ar cuja função principal consiste em evitar a entrada de poeira e outras partículas no carburador e consequentemente nos cilindros.

Um motor utiliza entre 2000 L. e 5000 L. de ar por minuto, sendo absolutamente necessário a existência de um filtro para evitar a entrada de partículas de poeira, que iriam obstruir calibradores de ar ou originar desgaste nos pistões e nos cilindros.

w.mecatronicadegaragem.blogspot.com

Os filtros, quando sujos, oferecem uma certa resistência ao fluxo de ar e afetam o rendimento do carburador devendo portanto ser limpos ou substituídos a intervalos regulares, como por exemplo, a cada 10.0 km.

O filtro de ar também atua como silencioso, já que atenua o ruído que produz o ar ao entrar no coletor de admissão. O filtro e a tomada de ar são projetados de maneira a diminuir a ressonância causada pelas flutuações de pressão no coletor de admissão.

Os motores têm, na sua maioria, um circuito fechado de respiração que evita que os gases do Carter passem para a atmosfera. Alguns sistemas põem o cárter em comunicação com o filtro de ar por meio de um tubo de borracha ou plástico que liga a tampa das válvulas ao filtro. Em outro sistema a comunicação é feita com o coletor de admissão.

Numerosos filtros de ar têm posições para verão e inverno. Na posição de inverno o filtro aspira o ar que circunda o coletor de escapamento, o que facilita o arranque à frio e evita que o carburador gele. Contudo, dado que o ar quente perde densidade, verifica-se uma ligeira queda de rendimento. Já nos países temperados ou quentes não é necessária a mudança de posição.

Esta mudança de posição é feita automaticamente pela válvula thermac.

Existem vários tipos de filtros de ar, dependendo as suas formas e dimensões geralmente do espaço ocupado pelo motor. O filtro com elemento de papel é o mais utilizado tem uma maior leveza e capacidade. O elemento filtrante é fabricado com papel fibroso tratado com resina, dobrado em sanfona a fim de oferecer uma melhor superfície de contato com o ar que o atravessa.

O filtro em banho de óleo foi amplamente utilizado em países onde o ar está impregnado de poeira. O ar que penetra pelo centro do filtro passa pelo banho de óleo, onde ficam retidas as partículas de poeira mais pesadas. Quando o ar passa pelo elemento de rede metálica (em baixo), a poeira restante e algumas partículas de óleo arrastadas no movimento do ar ficam nele retidas, completando-se assim a filtragem do ar, que chega limpo ao motor.

Filtro de rede metálica w.mecatronicadegaragem.blogspot.com

A rede metálica, o tipo mais simples de filtro de ar, consiste numa rede de malha larga impregnada de óleo antes de ser colocada no filtro. A sua duração é praticamente ilimitada, desde que a rede seja desmontada periodicamente para limpeza e impregnação de óleo. Existia uma infinidade de modelos de filtros de rede metálica, alguns dos quais apresentavam uma câmara idêntica à de um silencioso de escapamento, a fim de reduzir o ruído.

Carburação

A depressão originada nos cilindros, quando os pistões descem no tempo de admissão, aspira o ar para os cilindros. Este atravessa o carburador, sendo a sua quantidade regulada por uma válvula rotativa, designada por borboleta, que se abre ou fecha-se, conforme a pressão exercida sobre o acelerador.

A quantidade de ar aspirado depende da rotação do motor e da posição da borboleta. A função do carburador consiste em assegurar que à corrente de ar se junte a um determinado volume de gasolina para que chegue aos cilindros uma mistura correta.

A gasolina, proveniente da cuba de nível constante, junta-se à corrente de ar numa passagem estreita denominada difusor, ou cone de Venturi, cujo funcionamento se baseia no princípio de que a pressão de uma corrente de ar diminui quando a sua velocidade aumenta. Quando o ar passa através do estrangulamento do difusor, a sua velocidade aumenta, sendo precisamente nessa zona de baixas pressões que a gasolina é aspirada pela corrente de ar.

O fluxo do ar será o máximo quando o motor trabalhar à velocidade máxima, com a borboleta completamente aberta. Quanto maior for a velocidade do ar que passa pelo difusor, maior será a aspiração de gasolina.

w.mecatronicadegaragem.blogspot.com

Na prática, um carburador, tão simples como o acima descrito, não seria satisfatório pois a gasolina e o ar não têm as mesmas características de fluxo. Enquanto a densidade do ar diminui à medida que a velocidade do seu fluxo aumenta, a densidade da gasolina mantém-se constante qualquer que seja a velocidade do seu fluxo. Como a mistura gasosa, para ter uma combustão eficiente, deve forma-se em relação ao seu peso, numa proporção aproximada de 15:1 e, dado que aumentando a velocidade do ar, diminuiria a sua densidade, a mistura iria enriquecendo progressivamente, podendo tornar-se tão rica que não chegaria a inflamar-se. Existem dois processos para solucionar este problema; num carburador de difusor e jatos fixos, um certo volume de ar mistura-se com a gasolina antes de esta passar para o difusor através de um conjunto de tubos emulsionadores ou de compensadores. Já num carburador de difusor e jatos variáveis, podem variar-se a quantidade de gasolina debitada pelo pulverizador, bem como as dimensões do difusor para manter as corretas proporções de ar e gasolina. A gasolina na cuba de nível constante do carburador mantém-se sempre ao mesmo nível, graças a uma válvula acionada pela bóia. A extremidade do condutor de gasolina que desemboca no difusor deve ficar mais alta que o nível da gasolina na cuba de nível constante para evitar á saída de combustível quando o automóvel se inclina, como acontece, por exemplo, numa subida ou descida. Isto quer dizer que a gasolina tem de subir ligeiramente – cerca de 6mm – antes de se misturar com o fluxo do ar no difusor. A sucção criada pela depressão é suficiente para elevar a gasolina acima do pulverizador e para introduzi-la no difusor sob forma de pequenas gotas. Além de aspirar a gasolina e o ar, o sistema de carburação deve também pulverizar a gasolina, misturá-la perfeitamente com o ar e distribuir a mistura de maneira uniforme pelos cilindros. A gasolina apresenta-se já sob a forma de pequenas gotas quando entra no difusor. Num carburador de difusor e jatos fixos é prévia e parcialmente emulsionada com o ar; já num carburador de difusor e jatos variáveis a divisão em pequenas gotas ocorre no difusor e é provocada pela velocidade da corrente de ar. Quando a mistura gasosa passa pela borboleta, penetra no coletor por influência da depressão resultante da sucção do pistão, tendo início a vaporização das gotículas de gasolina. A velocidade da vaporização depende do valor da depressão no coletor de admissão que, por si, depende da rotação do motor e da posição da borboleta. A grande velocidade, quando a borboleta se encontra totalmente aberta, a depressão poderá ser de valor tão baixo que grande parte da gasolina permanecerá w.mecatronicadegaragem.blogspot.com em estado líquido e será transportada pelo ar ou escorrerá ao longo das paredes do coletor. À velocidade cruzeiro, com a borboleta parcialmente fechada, a depressão aumenta, pelo que a maior parte da gasolina ficará vaporizada. Nos motores em que existe um carburador para cada cilindro, o fato da mistura se encontrar parcialmente no estado líquido é irrelevante, pois esta irá vaporizar-se na câmara de explosão pela ação do calor. Porém, quando só um carburador alimenta vários cilindros, a distribuição uniforme é fundamental, mas difícil se a mistura estiver úmida. Elevando a temperatura do coletor de admissão por meio de um “ponto quente”, aquecido pelos gases de escapamento ou por água, consegue-se uma melhor vaporização da gasolina e, portanto, uma distribuição mais uniforme da mistura.

(Parte 4 de 6)

Comentários