Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Curso de mecânica de automoveis, Notas de estudo de Educação Física

muito bom, espcialmente para mulheres.

Tipologia: Notas de estudo

2013
Em oferta
30 Pontos
Discount

Oferta por tempo limitado


Compartilhado em 10/05/2013

Ronaldo.Brito
Ronaldo.Brito 🇧🇷

3.9

(6)

10 documentos

Pré-visualização parcial do texto

Baixe Curso de mecânica de automoveis e outras Notas de estudo em PDF para Educação Física, somente na Docsity! 1 A BÍBLIA DO CARRO "Copyright (C) 2001-2002 - Direitos reservados e registrados pelo escritor Paulo G. Costa" www.baixebr.org 2 Motor O motor é a fonte de energia do automóvel. Converte a energia calorífica produzida pela combustão da gasolina em energia mecânica, capaz de imprimir movimento nas rodas. O carburante, normalmente constituído por uma mistura de gasolina e ar (a mistura gasosa), é queimado no interior dos cilindros do motor. A mistura gasosa é formada no carburador ou calculada pela injeção eletrônica, nos motores mais modernos, e admitida nas câmaras de explosão. Os pistões, que se deslocam dentro dos cilindros, comprimem a mistura que é depois inflamada por uma vela de ignição. À medida que a mistura se inflama, expande-se, empurrando o pistão para baixo. O movimento dos pistões para cima e para baixo é convertido em movimento rotativo pelo virabrequim ou eixo de manivelas o qual, por seu turno, o transmite às rodas através da embreagem, da caixa de câmbio, do eixo de transmissão e do diferencial. Os pistões estão ligados ao virabrequim pelas bielas. Uma árvore de cames, também conhecida por árvore de comando de válvulas, movida pelo virabrequim, aciona as válvulas de admissão e escapamento situadas geralmente na parte superior de cada cilindro. A energia inicial necessária para por o motor em movimento é fornecida pelo motor de arranque. Este engrena numa cremalheira que envolve o volante do motor, constituído por um disco pesado, fixado à extremidade do virabrequim ou árvore de manivelas. O volante do motor amortece os impulsos bruscos dos pistões e origina uma rotação relativamente suave ao virabrequim. Devido ao calor gerado por um motor de combustão interna, as peças metálicas que estão em contínuo atrito engripariam se não houvesse um sistema de arrefecimento. Para evitar desgastes e aquecimento excessivos, o motor inclui um sistema de lubrificação. O óleo, armazenado no cárter sob o bloco do motor, é obrigado a circular sob pressão através de todas as peças do motor que necessitam de lubrificação. 5 Tempo de explosão www.baixebr.org COMO SE PRODUZ A FORÇA MOTRIZ DO MOTOR A vela inflama a mistura Válvula de escapamento fechada Válvula de admissão fechada A mistura gasosa inflama-se na câmara de explosão O pistão é impelido para baixo por expansão da mistura da combustão A biela converte To movimento alternativo do pistão em movimento rotativo do virabrequim A rotação do virabrequim é transmitida as rodas 7 A energia calorífica, resultante da combustão da mistura gasosa, converte-se em energia mecânica, por intermédio dos pistões, bielas e virabrequim. O rendimento do motor depende da quantidade de energia calorífica que é transformada em energia mecânica. Quanto maior for o volume da mistura de gasolina e ar admitida no cilindro e a compressão dessa mistura, maior será a potência específica do motor. A relação entre os volumes da mistura gasosa no cilindro, antes e depois da compressão, é designada por taxa ou relação de compressão. Quando a faísca da vela de ignição inflama a mistura comprimida, a explosão deve propagar-se rapidamente, progressiva e uniformemente na cabeça do pistão que limita a câmara de explosão. Se a taxa de compressão for demasiada elevada para o tipo de gasolina utilizada, a combustão não será progressiva. A parte da mistura que se encontrar mais afastada da vela de ignição vai se inflamar violentamente ou detonará. Quando sucede tal fato, ou quando o motor tem muito avanço, costuma- se dizer que o motor “grila” ou está adiantado. Esta detonação poderá causar um aquecimento excessivo, além de perda de rendimento e, caso persista, danificará o motor. O excessivo aquecimento, e a diminuição de rendimento num motor pode resultar na pré-ignição (auto-ignição), ou seja, inflamação de parte da mistura antes de soltar a faísca, devido à existência de velas defeituosas ou de valor térmico inadequado ou até mesmo à presença – na câmara de explosão – de depósitos de carvão que se mantêm continuamente incandescentes. A pré-ignição, tal como a detonação, pode causar graves danos e reduz a potência do motor. Os motores de automóveis, em sua grande maioria, têm um ciclo de funcionamento de 4 tempos, ou ciclo Otto. Como as válvulas de admissão e escapamento devem abrir-se uma vez em cada ciclo, a árvore de comando que as aciona gira a metade da velocidade de rotação do virabrequim, a qual completa duas rotações em cada ciclo. Também existem motores de 2 tempos nos quais se dá uma explosão cada vez que o pistão desce, ou seja, uma vez em cada rotação do virabrequim. Este ciclo, basicamente mais simples do que o ciclo de 4 tempos, é muito utilizado em motocicletas. 10 Força motriz Ao produzir-se a combustão (explosão) da mistura de gasolina e ar, os pistões impulsionados pela expansão dos gases originam a força motriz do motor. Num automóvel de dimensões médias, quando o motor trabalha à velocidade máxima, cada pistão poderá chegar a efetuar 100 cursos pôr segundo. Devido a esta rápida sucessão de movimentos ascendentes e descendentes, os pistões deverão ser resistentes, embora fabricados com material leve - uma liga de alumínio - na maioria dos automóveis modernos. 11 Os anéis dos pistões vedam a folga existente entre os pistões e a parede do cilindro. Os anéis de compressão, que normalmente são dois, evitam que os gases passem do cilindro para o Carter, enquanto um terceiro anel raspador de óleo remove o excesso de óleo lubrificante das paredes do cilindro e devolve-o ao Carter. A força motriz é transmitida dos pistões e virabrequim que, juntamente com as bielas, a converte em movimento rotativo. As bielas são normalmente de aço forjado. A parte superior da biela, denominada pé da biela, está fixada ao pistão por meio de um pino que permite à biela oscilar lateralmente, enquanto se move para cima e para baixo. O pino do pistão é normalmente oco, a fim de pesar menos e encontra- se fixado ao pistão por meio de travas ou prensados. A parte inferior da biela (a cabeça da biela) está parafusada ao virabrequim fazendo uma trajetória circular, enquanto o pé da biela segue o movimento de vai e vem do pistão. Uma cabeça da biela pode terminar numa sessão horizontal ou oblíqua. www.baixebr.org 12 O volante do motor, disco pesado e cuidadosamente equilibrado montado na extremidade do virabrequim do lado da caixa de câmbio, facilita o funcionamento suave do motor, já que mantém uniforme o movimento de rotação do virabrequim. Os bruscos movimentos alternativos de subida e descida dos pistões ocorrem enquanto a inércia do volante mantém a uniformidade do movimento rotativo. A ordem de ignição dos cilindros também influi grandemente na suavidade da rotação do virabrequim. Considerando o cilindro mais próximo do ventilador número 1, a ordem de explosão num motor de 4 cilindros é normalmente 1, 3, 4, 2 ou 1, 2, 4, 3 para permitir uma distribuição equilibrada dos esforços no virabrequim. O desenvolvimento de pistões bi metálicos de dilatação controlada é uma das mais importantes e menos conhecidas inovações dos motores atuais. Este tipo de pistão, graças a inserções de aço no próprio alumínio do corpo do pistão, assegura uma maior estabilidade dimensional. Em outras palavras, reduzem as deformações do pistão como conseqüência das trocas de temperatura. Esta vantagem permite reduzir as tolerâncias ou folgas entre pistão e cilindro, melhorando assim a vedação do conjunto e a compressão efetiva. Outro detalhe importante no conjunto alternativo é a redução do peso do pistão e da superfície de contato com o cilindro. Os pistões de saia ultracurta e peso mínimo permitem sensíveis melhoras ao reduzir-se, por um lado, as forças de inércia que equivalem a consumo de energia – diminuindo-se, ao mesmo tempo, os atritos ou resistências passivas na fricção do pistão com o cilindro. Estas vantagens foram complementadas, em muitos casos, com anéis de materiais de baixo coeficiente de atrito e camisas de cilindro de materiais ou acabamentos especiais desenvolvidos com a mesma finalidade de reduzir resistências passivas. Bloco do motor Os blocos são, na sua maioria, de ferro fundido, material resistente, econômico e fácil de trabalhar na produção em série. A resistência do bloco pode ser aumentada, se for utilizada na sua fabricação uma liga de ferro fundido com outros metais. 15 Podem surgir rachaduras no bloco, em conseqüência da pressão causada pelo aumento de volume da água ao congelar, ou eboluir. Por vezes, essa dilatação pode chegar a desalojar os selos que vedam os furos resultantes da fundição. Os cilindros podem ser dispostos numa só fila em sentido longitudinal (motores em linha), em duas filas, formando um ângulo entre si (motores em V), ou horizontalmente e em duas filas, uma de cada lado do virabrequim (motor de cilindros horizontais opostos). Nos motores de 4 e 6 cilindros estes, na sua maioria, estão dispostos em linha. Quanto maior for o número de cilindros de um motor, mais suave será o seu funcionamento, sobretudo a baixa rotação. Na maioria dos automóveis de grande cilindrada (6 ou 8 cilindros) recorre-se à disposição em V. São poucos, em termos de porcentagem, os motores que utilizam o sistema de cilindros horizontais opostos. As válvulas de escape são elementos sujeitos, em todos os motores, a solicitações térmicas realmente elevadas. Os fabricantes, ao projetarem os cabeçotes e as câmaras de compressão, levaram em consideração esse problema, contornando-o mediante uma rígida refrigeração da zona do cabeçote onde estão inseridas as guias de válvulas e aumento também a áreas de assento da cabeça da válvula no cabeçote para facilitar, assim, a transmissão térmica. E, mesmo assim, em motores de alta performance, o problema continua sendo difícil e nem sempre de solução possível, ainda que se empreguem os melhores materiais e tratamentos na fabricação de válvulas. As válvulas refrigeradas a sódio constituem a resposta da técnica a este problema. A diferença das válvulas normais, que são maciças, as refrigeradas a sódio são ocas, abrigando em seu interior uma determinada quantidade de sódio. Quando a cabeça da válvula esquenta, o sódio existente no interior da haste se funde e circula ao longo de toda a cavidade da válvula transportando eficazmente o calor desde a cabeça da válvula até o pé da mesma. As válvulas refrigeradas a sódio permitem reduzir a temperatura na cabeça de cerca de 800°C, valor normal em válvulas convencionais, a até menos de 600°C. Comando de válvulas A distribuição, ou seja, o sistema de comando das válvulas é concebido para que cada uma delas abra e feche no momento apropriado do ciclo de 4 tempos, se mantenha aberta o período de tempo necessário para possibilitar uma boa 16 admissão da mistura gasosa, a completa expulsão dos produtos da combustão e funcione suave e eficientemente nos mais variados regimes de rotação do motor. Há vários processos para atingir estes objetivos. No sistema de balancins acionados por hastes impulsoras os tuchos recebem movimento de uma árvore de comando de válvulas situada no interior do bloco. O virabrequim aciona a árvore de comando de válvulas por intermédio de uma corrente, ou por um conjunto de engrenagens ou ainda por correia dentada, numa relação 2:1, ou seja, enquanto o virabrequim dá duas voltas, a árvore de comando das válvulas completa uma. Para um bom funcionamento, as válvulas devem, ao fechar, ajustar-se perfeitamente às suas sedes. Para tal, deve existir uma folga entre a válvula fechada e o seu balancin. Esta folga, que normalmente é maior na válvula de escapamento do que na de admissão, tem em conta a dilatação da válvula quando aquecida. 17 O sistema de ignição deve soltar uma faísca em cada vela no momento preciso, de acordo com a distribuição que faz abrir e fechar as válvulas no momento exato. O distribuidor, que funciona sincronizado com as válvulas, tem por função distribuir a corrente de alta tensão até às velas e é normalmente acionado por engrenagens a partir da árvore de comando ou do vilabrequim. Os motores mais modernos não possuem distribuidores e esse sistema se faz eletronicamente. A árvore de comando das válvulas está assentada no bloco sobre três ou cinco apoios. Os excêntricos da árvore de comando das válvulas estão dispostos de modo a assegurar a ordem de ignição. Os projetistas de motores buscam a redução do peso dos componentes da distribuição, a fim de obter um aumento de duração e rendimento em motores funcionando a elevados regimes de rotação. Com este objetivo, utilizam uma ou duas árvores de comando de válvulas no cabeçote. Nas versões mais modernas com 16 e24 válvulas pode-se utilizar até mais comandos. A ação destas árvores de comando das válvulas sobre as válvulas é logicamente mais direta, dado que nela intervêm menos peças do que no sistema de árvore de comando das válvulas no bloco. Um processo simples de transmitir o movimento do virabrequim à árvore de comando das válvulas no cabeçote consiste na utilização de uma corrente, contudo, uma corrente comprida terá tendência a vibrar, a não ser que apresente um dispositivo para mante-la tensa. Na maior parte das transmissões por corrente utiliza-se, como tensor (esticador), uma tira de aço comprida ligeiramente curva, por vezes revestida de borracha. Uma mola helicoidal mantém o tensor de encontro à corrente. Um outro tipo de tensor consiste num calço de borracha sintética ligado a um pequeno pistão sujeito a uma ação de uma mola acionada por pressão de óleo. Também se utiliza um braço em cuja extremidade se encontra uma engrenagem dentada livre (ou “louca”) que engrena na corrente, mantendo-a esticada por uma mola. Alguns automóveis de competição apresentam transmissões por engrenagens entre a árvore de comando de válvulas e o virabrequim. Estes tipos de transmissão são, contudo, muito ruidosos. Uma das transmissões mais recentes para árvores de comando de válvulas no cabeçote utiliza uma correia exterior dentada de borracha. Este tipo de correia, normalmente isento de lubrificação, é fabricado com borracha resistente ao óleo. Embora tenha sido usual o emprego de balancins junto à árvore de comando para acionar as válvulas, é tendência atual eliminar os balancins e colocar as válvulas diretamente sob a ação dos eixos excêntricos. Algumas árvores de comando de válvulas no cabeçote utilizam tuchos hidráulicos, que são auto reguláveis e funcionam sem folga, sendo assim eliminado o ruído característico de batimento de válvulas. Um tucho hidráulico compõe-se de duas partes, umas das quais desliza no interior da outra; o óleo, sob pressão, faz com que a haste aumente o comprimento e anule a folga quando o motor se encontra em funcionamento. MAIS DE DUAS VÁLVULAS POR CILINDRO O que há de mais moderno em sistemas de distribuição do comando de válvulas, consiste na utilização de 3, 4 e até 5 válvulas por cilindro. 20 motores de 4 cilindros, quer nos de 6. Esta disposição permite um equilíbrio mecânico excelente; o movimento de um componente num sentido é equilibrado pelo movimento do componente homólogo em sentido contrário. Três tipos de motor em V Os motores em V apresentam, como principal vantagem o fato de o conjunto poder ser mais curto que o dos motores em linha, podendo, portanto, o seu virabrequim ser mais curto e, conseqüentemente, mais rígido, o que permite ao motor trabalhar mais suavemente a elevado regime de rotação. O motor V8 necessita apenas de quatro mancais de biela desde que estes se encontrem dispostos de modo a formar entre si um ângulo de 90º e sejam suficientemente compridos para que em cada um possam trabalhar, lado a lado, duas bielas. A árvore de manivelas necessita de um mancal de apoio entre cada par de mancais de bielas. Os motores V6 não são de funcionamento tão suave como os V8, que são extremamente bem equilibrados e proporcionam quatro explosões espaçadas igualmente entre si em cada rotação do virabrequim. O motor V6 tem um mancal de biela para cada biela. Com um tempo de explosão em cada terço de rotação e com os mancais de biela dispostos a intervalos de 60 graus, o motor é de funcionamento suave e de equilíbrio razoável. 21 No motor V4 é necessário um eixo equilibrador adicional, que roda a metade do número de rotações do virabrequim. Em outros modelos, o ângulo do V pode ser reduzido até cerca de 10 %. Câmaras de explosão O rendimento de um motor à explosão depende, em grande parte, da forma das câmaras de explosão. Para ser eficaz, uma câmara de explosão, deve ser de tal modo compacta que a superfície das suas paredes – através das quais o calor se dissipa para o sistema de resfriamento – seja mínima. Como regra, considera-se que a forma ideal de uma câmara de explosão seja esférica, com o ponto de ignição situado no centro, que resultaria numa combustão uniforme da mistura gasosa em todas as direções e num mínimo de perda de calor através das paredes. Sendo tal forma impraticável num motor de automóvel, o conceito mais aproximado, neste caso, é o de uma calota esférica. As formas das câmaras de explosão, que habitualmente apresentam os motores de automóveis, são de quatro tipos: hemisférica, em banheira, em cunha (ou triangular) e aberta na cabeça do pistão, todas elas com válvulas na cabeçote. Os tipos de câmara de válvulas lateral ou de cabeça em L e em F estão atualmente ultrapassados. A cabeça hemisférica é utilizada principalmente em motores de elevado rendimento, já que a sua fabricação é dispendiosa. Na maioria dos automóveis atuais, as câmaras de explosão apresentam uma das quatro formas principais, compatíveis com motores de alta taxa de compressão. O sistema de válvula lateral utilizado nos primeiros automóveis é o mais econômico. Contudo, neste sistema, a forma da câmara limita a taxa de compressão a pouco mais de 6:1, valor muito baixo para se conseguir bom rendimento ou economia de gasolina. O sistema de cabeça em F consiste numa combinação de válvulas laterais e à cabeça. As válvulas de escapamento são montadas no bloco do motor e as de admissão na cabeça. 22 Uma das formas mais eficazes e viáveis de câmara de explosão é a clássica em calota esférica, cuja base é formada pela cabeça do pistão. As válvulas inclinadas formam entre si um ângulo de 90º, ocupando a vela uma posição central entre ambas. Esta disposição, clássica pela sua simetria, encurta a distância que a chama deve percorrer entre a vela e a cabeça do pistão, assegurando uma boa combustão. É utilizada em motores de elevado rendimento, sendo o ângulo entre as válvulas inferior a 90º. A câmara hemisférica implica na utilização de uma ou duas árvores de comando no cabeçote ou então de uma árvore de comando lateral com um complexo sistema de balancins e hastes impulsoras para o acionamento das duas filas de válvulas. A sua fórmula facilita a admissão da mistura gasosa que penetra no cilindro por um dos lados do motor e, a expulsão dos gases da combustão, pelo lado contrário. Também proporciona mais espaço para os dutos de admissão de grande diâmetro, podendo estes serem dispostos de modo que a mistura penetre na câmara facilmente e com a devida turbulência. 25 Uma das extremidades do virabrequim está submetida ao impulso proveniente da pressão da embreagem e, em alguns casos, da reação resultante das engrenagens que movem os órgãos auxiliares. Se este impulso não fosse controlado causaria deslocamentos axiais no virabrequim o que, além de originar ruídos, provocaria desgastes. Para eliminar tal inconveniente, um dos apoios do virabrequim é rodeado por arruelas axiais de encosto, normalmente conhecidas por meias-luas do virabrequim, constituídas por finos segmentos de aço revestidos de metal antifricção, que mantém o virabrequim na sua posição, anulando por encosto qualquer reação evidente à deslocação axial. Uma bomba faz com que o óleo circule, sob pressão, por uma série de canais existentes no bloco e penetre nos mancais do virabrequim através de um orifício aberto em cada bronzina. Este orifício comunica com um sulco existente em torno da face interior da bronzina, através do qual o óleo é distribuído. Parte do óleo sob pressão penetra pelos furos abertos no virabrequim e lubrifica os mancais das bielas. A folga entre o eixo e os apoios, que nunca deve exceder 0,1 mm, variando para menos conforme o fabricante, regula a circulação de óleo e, em grande parte, a quantidade de óleo impulsionada para os pistões e cilindros. O orifício por onde penetra o óleo que lubrifica um mancal situa-se próximo do ponto onde a pressão exercida sobre esta é mínima, isto é, no local onde é maior a folga entre o mancal e o eixo. Ao rodar, o eixo arrasta o óleo em volta do mancal formando um calço de óleo. A pressão autogerada no calço de óleo é bastante superior à pressão resultante da ação da bomba de óleo nas tubulações de alimentação, evitando assim o contato das superfícies metálicas entre si, mesmo quando o mancal é sujeito a elevadas cargas. Mancais de bucha cilíndrica – Os mancais lisos, quando constituídos por um cilindro formado por uma só peça, são designados simplesmente por buchas. São utilizados, por exemplo, nos balancins e nos pés das bielas As buchas mais simples são totalmente fabricadas do mesmo metal ou liga, normalmente o bronze. A bucha é montada com interferência, ou seja, introduzida sob pressão no seu alojamento. Se a alimentação de óleo não for suficiente, a bucha cilíndrica pode ser revestida com uma matéria plástica como, por exemplo o teflon. Em certos casos, são utilizadas buchas de metal poroso e outros materiais anti fricção. Rolamentos – Os rolamentos de esferas, de roletes ou de agulhas são, entre todos os apoios, o de menor coeficiente de atrito sendo, no entanto, também os de preço mais elevado. São utilizados em órgãos auxiliares dos motores de automóveis como a bomba de água e o alternador e, em alguns motores de competição como também em sistemas de transmissão para árvores de comando no cabeçote. Motor diesel Enquanto no motor a gasolina - mistura gasosa ar-gasolina - é inflamada por meio de uma faísca elétrica produzida pela vela de ignição, no motor a Diesel não existem velas de ignição e a gasolina é substituída por óleo Diesel. 26 A ignição, num motor a Diesel, é provocada pela compressão, que faz elevar a temperatura do ar na câmara de combustão de tal modo que esta atinja o ponto de auto-inflamação do combustível. O óleo Diesel, que se vaporiza menos que a gasolina, não é introduzido na câmara de combustão sob a forma de mistura com ar, mas sim injetado sob alta pressão por meio de um injetor. Na câmara de combustão, o óleo diesel inflama-se em contato com o ar aquecido por efeito da forte compressão. Uma bomba acionada pelo próprio motor fornece o óleo diesel a cada injetor em determinadas quantidades e sob elevada pressão. O acelerador regula a quantidade de combustível fornecido pela bomba e, conseqüentemente, a potência gerada no motor. As vantagens dos motores a Diesel residem no seu maior rendimento (que resulta numa redução nos custos do combustível), na sua maior duração e na diminuição dos custos de manutenção. Entre as desvantagens deste tipo de motor, estão incluídos um elevado preço, maior peso, a vibração que produz à baixa rotação, o cheiro do combustível queimado, o ruído – superior ao provocado por um motor a gasolina e uma menor capacidade de aceleração. Num motor de automóvel a gasolina médio, a mistura gasosa sofre uma compressão que reduz o seu volume a cerca de um nono do seu valor inicial, o que corresponde a uma relação ou taxa de compressão 9:1. num motor a Diesel esta relação pode atingir o valor de 22:1, de modo a aumentar a temperatura do ar. Nas câmaras de combustão do motor a Diesel, muito menores que as de um motor a gasolina, a taxa de compressão, sendo mais elevada, resulta num aumento de rendimento pois é maior a conversão da energia calorífica em energia mecânica; além disso, verificam-se menos perdas de calor nessas câmaras. Cada cilindro num motor a Diesel apresenta um injetor que assegura o fornecimento de combustível na quantidade correta e no devido momento. Uma bomba, que gira a metade do número de rotações do virabrequim, impulsiona o 27 combustível para os injetores e destes para as câmaras de combustão, segundo a ordem de ignição. Sistema de Alimentação A função da carburação – A carburação desempenha um papel essencial ao permitir que o motor do automóvel arranque facilmente, tenha uma boa e progressiva aceleração, funcione economicamente, dê o máximo rendimento e não morra. Em resumo, a sua função consiste em misturar homogeneamente uma determinada quantidade de gasolina com outra de ar formando uma mistura gasosa e fornecendo uma proporção adequada desta mistura pulverizada ou atomizada a cada cilindro para sua combustão. O processo completo da carburação tem início quando a gasolina se mistura com o ar e termina quando ocorre a sua combustão (explosão) nos cilindros. Assim os carburadores, o coletor de admissão, as válvulas de admissão e mesmo as câmaras de explosão e os pistões intervêm na carburação. Na alimentação do carburador interferem os seguintes elementos: um tanque de combustível colocado à distância, uma bomba que aspira a gasolina do tanque e a envia ao depósito de nível constante, ou “cuba”, do carburador e vários filtros montados no circuito que impedem a entrada de impurezas, que teriam interferência, não só no carburador como na bomba. Relação da mistura ar-gasolina – Regra geral, a completa combustão da mistura é assegurada quando a sua relação em peso é de quinze partes de ar para uma de gasolina – a mistura correta. Contudo, esta relação em peso ar-combustível não proporciona a potência máxima nem, em geral, a máxima economia. O arranque, em tempo frio, poderá exigir uma mistura composta por uma parte de ar para uma parte de gasolina enquanto que, para obter o máximo de economia e uma velocidade constante e não excessiva – velocidade cruzeiro –, é necessária uma mistura menos rica, como seja a dezesseis partes de ar para uma de gasolina, o que se supõe a máxima economia possível para tal velocidade. A mistura deverá satisfazer as várias condições de funcionamento do motor, ou seja: rica, para o arranque; menos rica para pequenas velocidades e ralenti; pobre, para um funcionamento econômico a velocidade moderada; mais rica para acelerações e velocidades elevadas. 30 várias vezes será mais difícil conseguir fazer que o motor pegue, pois a mistura torna-se ainda mais rica. A condensação da umidade ocorre no interior de todos os tanques de gasolina, especialmente nos dos automóveis que ficam sujeitos às baixas temperaturas noturnas após terem estado expostos ao calor do sol durante o dia. A condensação mínima verifica-se nos tanques subterrâneos dos postos de abastecimento, pouco afetados pelas variações de temperatura do ar. Quando um automóvel estaciona, ao fim do dia, está normalmente quente; à medida que arrefece, o ar contendo umidade é aspirado pelo tanque de gasolina. Verifica-se então a condensação e as gotas de água, mais pesadas que a gasolina, descem para o fundo do tanque, originando a sua corrosão. É sempre aconselhável encher o tanque antes que o nível de gasolina esteja demasiado baixo, a fim de evitar que a água ou as impurezas que eventualmente existam no fundo sejam aspiradas pelo sistema de alimentação. Se o automóvel tiver de permanecer parado durante muito tempo, deve-se esvaziar a gasolina da bomba e do carburador para evitar a formação de depósitos que poderão entupir o sistema de alimentação. O índice de octana de uma gasolina denomina-se comparando-a com uma mistura de dois derivados líquidos do petróleo num motor de teste de laboratório. Um dos derivados – a isoctana – apresenta uma grande resistência à detonação, enquanto a heptana tem uma resistência bastante menor. Diz-se que uma gasolina tem um índice de octana de 90 se tiver as mesmas propriedades antidetonantes no motor de teste laboratorial que a mistura de 90 partes de octana com 10 partes de de heptana. A taxa de compressão do motor de teste pode ser regulada enquanto este trabalha, podendo obter-se um ponto exato de detonação para qualquer tipo de gasolina. No Brasil as características de gasolina vendida ao público são fixadas por lei. A gasolina consiste numa mistura complexa de hidrocarbonetos, sendo o seu índice de octana uma das muitas características que afetam o seu nos motores; essas características variam durante o armazenamento sendo, portanto, conveniente recorrer a postos de gasolina de grande movimento aonde o combustível permanece armazenado por muito pouco tempo. O índice de octana de que o motor necessita também varia com o tempo de funcionamento e quilometragem deste, devido à progressiva acumulação de carvão nas câmaras de explosão e outros fatores. É aconselhável seguir as recomendações do fabricante do automóvel quanto ao índice de octana da gasolina a ser utilizada. Não há vantagens em usar uma gasolina com um índice superior ao necessário, embora também não haja desvantagens, a não ser o preço mais elevado daquela. Formação de vapor e gelo – A alimentação de combustível ao motor pode ser dificultada em tempo quente pela formação de vapor, que ocorre no sistema de alimentação – quando este está demasiado quente -impedindo que a bomba forneça o combustível ao carburador. As vezes, a gasolina entra em ebulição na cuba do carburador após a parada do motor, devido ao calor deste, no que resulta uma mistura demasiada rica no coletor de admissão. Como esta dificulta o arranque, é necessário aguardar que o motor arrefeça. Para evitar estas dificuldades, as companhias fornecedoras de combustível alteram a volatilidade da gasolina para que esta se adapte às variações de temperatura, no verão e no inverno. O gelo que se forma na parte externa do carburador não causa problemas; porém, o que se forma em seu interior pode reduzir e por vezes obstruir as passagens do ar. O motor perde potência e “morre” quando funciona em marcha lenta. Consumo de combustível – A forma de dirigir influi consideravelmente no consumo de combustível. Pode haver variações mesmo em trajetos semelhantes percorridos 31 em dias consecutivos, devido às diferenças de velocidade e às condições do trânsito. Um automóvel circulando em estrada a 80 Km/h poderá consumir 7 Lts. aos 100 Km, consumo este que poderá aumentar para 11 Lts. Aos 100 Km/h. Na cidade, onde o trânsito obriga a repetidas paradas e arranques, o consumo poderá atingir os 14 Lts. , aos 100 Km. O consumo de gasolina, durante o primeiro quilômetro percorrido com o motor frio, é muito superior ao consumo durante o percurso de 1 Km com o motor quente, razão pela qual é importante aquecer o motor tão rapidamente quanto possível. Não é fácil calcular com exatidão o consumo de combustível; pode-se, contudo, obter uma indicação bastante aproximada enchendo completamente o tanque antes de uma viagem longa, após a qual se volta a encher este. Dividindo o número de litros necessários para encher novamente o tanque pelos quilômetros percorridos, obtém-se o consumo aproximado. Para dados mais exatos, fazer a comparação entre os resultados de diversas viagens. Refinação do petróleo para obtenção da gasolina – A gasolina é um dos numerosos produtos derivados do petróleo bruto, que é destilado nas refinarias num depósito metálico designado por torre de destilação fracionada. O petróleo é aquecido num forno até a temperatura que garanta a vaporização de todos os produtos a serem extraídos. À medida que o vapor sobe na coluna da torre de destilação fracionada, vai-se condensando em níveis diferentes. A gasolina obtida na torre de destilação fracionada tem um índice de octana baixo, pelo que terá que ser tratada a fim de se obter um índice de octana mais elevado para eliminar, ou pelo menos neutralizar, os elementos corrosivos ou que produzem resíduos gomosos. Após esse tratamento, é misturada para que possa apresentar vários índices de octana, sendo-lhe também acrescentados os aditivos que aumentam a sua resistência à formação de gelo no carburador.O petróleo é aquecido num forno até a temperatura que garanta a vaporização de todos os produtos a serem extraídos. À medida que o vapor sobe na coluna da torre de destilação fracionada, vai-se condensando em níveis diferentes. A gasolina obtida na torre de destilação fracionada tem um índice de octana baixo, pelo que terá que ser tratada a fim de se obter um índice de octana mais elevado para eliminar, ou pelo menos neutralizar, os elementos corrosivos ou que produzem resíduos gomosos. Após esse tratamento, é misturada para que possa apresentar vários índices de octana, sendo-lhe também acrescentados os aditivos que aumentam a sua resistência à formação de gelo no carburador. Coletor de admissão 32 O coletor de admissão tem duas funções: contribuir para a vaporização da mistura gasosa proveniente do carburador e distribuí-la pelos cilindros em quantidades tão uniformes quanto possível. A distribuição perfeitamente uniforme nem sempre é possível, já que a mistura por vezes não é toda vaporizada no carburador, chegando ao coletor de admissão alguma gasolina ainda em estado líquido. Num motor que apresente um carburador para cada cilindro, as conseqüências desse fato não são relevantes, já que cada um recebe a totalidade do combustível que lhe é destinado. No entanto, quando o carburador tem de alimentar mais do que um cilindro, é necessário um sistema adicional de vaporização para melhorar a distribuição da mistura. Normalmente uma zona aquecida pelo escapamento e situada na parte central do coletor de admissão, constitui um vaporizador auxiliar de combustível. O excessivo aquecimento desta zona poderá dar origem a uma perda de potência devido à redução da densidade do ar e, para evitar este inconveniente, existem, em algumas dessas zonas, válvulas reguladas por termostato que se fecham quando as temperaturas dos escapamentos são demasiado elevadas. Se a disposição do motor não permitir a inclusão de uma zona aquecida pelo escapamento, o coletor de admissão pode ser aquecido por água do sistema de resfriamento ou até mesmo por termostatos elétricos fixados ao coletor de admissão. O aquecimento por água assegura uma temperatura mais constante numa zona maior; porém, após um arranque com motor frio, não se torna tão rapidamente eficaz como o aquecimento proporcionado pelo escapamento. 35 A válvula EGR é aberta de acordo com as condições de funcionamento do motor e os valores de regulagem para recirculação dos gases de escape estão memorizados no módulo de injeção eletrônica. Válvula reguladora de vácuo EGR A válvula reguladora de vácuo EGR encontra-se localizada no tubo de vácuo que vai do coletor de admissão para a válvula EGR. Quando a válvula reguladora de vácuo EGR fica sem alimentação de tensão, o vácuo atua sobre o prato metálico da válvula que se encontra pressionado contra a sede da válvula pela força da mola, e o vácuo é reduzido pela entrada do ar fresco. Este ar passa através de um filtro de espuma no alojamento superior da válvula reguladora de vácuo. O vácuo restante não é suficiente para abrir a válvula EGR. A válvula reguladora de vácuo é desacoplada através de um ponto de estrangulamento na ligação do tubo flexível do tubo de vácuo para o coletor de admissão, de forma que a pressão possa ser regulada. Quando a válvula reguladora de vácuo é acionada por impulsos de massa, através do módulo de injeção eletrônica, o campo magnético da bobina aumenta a força de fechamento da válvula de sede plana, dado que o prato em ferro da válvula é atraído magneticamente. Isto permite a criação de um vácuo que atua sobre o diafragma da válvula EGR, abrindo-a. O vácuo na válvula reguladora de vácuo pode ser controlado pelos impulsos de massa variáveis. Deste modo, a válvula EGR é aberta de forma que a recirculação dos gases de escape no circuito fechado esteja de acordo com os valores específicos no mapa memorizado no módulo de controle do motor. Tanque Atualmente os tanques de gasolina estão montados o mais longe possível do motor, ou seja, na parte de trás do veículo quando este tem o motor à frente, na parte da frente quando o motor está na parte de trás, exceto um ou outro caso. Esta disposição reduz o perigo de incêndio e permite a localização do tanque a um nível mais baixo que o do compartimento do motor. Quanto mais baixo estiver o tanque – bastante pesado, quando cheio -, menos afetará a estabilidade do automóvel. O interior de alguns tanques encontra-se dividido para evitar o deslocamento do combustível, quando o automóvel freia ou descreve uma curva, e é normalmente tratado para não enferrujar devido à condensação da umidade. Os tanques de gasolina eram normalmente metálicos e atualmente tem se usado muito o plástico. A sua capacidade varia entre 18 Lts., e 115 Lts., segundo o modelo do automóvel e as características do motor. Atualmente os tanques de gasolina estão montados o mais longe possível do motor, ou seja, na parte de trás do veículo quando este tem o motor à frente, na parte da frente quando o motor está na parte de trás, exceto um ou outro caso. Esta disposição reduz o perigo de incêndio e permite a localização do tanque a um nível mais baixo que o do compartimento do motor. Quanto mais baixo estiver o tanque – bastante pesado, quando cheio -, menos afetará a estabilidade do automóvel. 36 O interior de alguns tanques encontra-se dividido para evitar o deslocamento do combustível, quando o automóvel freia ou descreve uma curva, e é normalmente tratado para não enferrujar devido à condensação da umidade. Os tanques de gasolina eram normalmente metálicos e atualmente tem se usado muito o plástico. A sua capacidade varia entre 18 Lts., e 115 Lts., segundo o modelo do automóvel e as características do motor. Em regra, um tanque cheio permite à maioria dos automóveis percorrer normalmente um mínimo de 320 km. Alguns automóveis têm um tanque de combustível de reserva; outros dispõem de uma luz de aviso que se acende quando o nível de gasolina está muito baixo. O tubo de enchimento de um tanque deve ter a largura suficiente para admitir o fluxo de combustível à velocidade a que este é debitado pelas bombas dos postos de gasolina e para permitir a saída do ar do interior do tanque à medida que esse vai se enchendo. Os tanques apresentam tubos de respiro no tampão para permitir a entrada de ar no seu interior, conforme o combustível vai sendo consumido, a fim de evitar a formação do vácuo. Canister Hidrocarbonetos são liberados do tanque de combustível na forma de vapores aromáticos. Os níveis de emissão evaporativa são afetados pelo tipo de combustível utilizado, pela integridade das linhas e do recipiente de vapor (cânister), bem como pela capacidade da tampa do tanque de combustível para vedar. Portanto, deve existir um sistema para armazenar os vapores liberados do combustível. 37 Vapores de gasolina são acumulados no tanque de combustível do veículo. Se liberados para a atmosfera, hidrocarbonetos (HC) também seriam liberados para a atmosfera. De modo a reduzir as emissões de HC da evaporação de combustível, os vapores são direcionados para um recipiente (cânister) contendo carvão ativado. Bomba de combustível A bomba de gasolina torna-se necessária num sistema de alimentação, já que o carburador, através do qual passa toda a gasolina, fica normalmente a um nível mais elevado que o tanque e bastante afastado deste. Existem dois tipos de bombas: as mecânicas, que se situam necessariamente no compartimento do motor, pois são acionadas por este e elétricas, instaladas normalmente próximo do tanque, afastadas do motor e do calor por este liberado. Mecânica Consiste numa câmara dividida por um diafragma. A parte superior contém um filtro e um copo de sedimentação e apresenta duas válvulas com molas para regular o fluxo da gasolina. Na parte inferior encontra-se uma mola que regula a pressão de alimentação da gasolina e uma haste de comando (braço ou alavanca) acionada pela árvore de comando das válvulas. O diafragma é alternadamente impelido para baixo pela haste e para cima pela mola. Quando o carburador está cheio e a válvula de agulha fechada, não se verifica qualquer passagem de gasolina e o diafragma permanece na sua posição inferior. Em conseqüência, a haste de comando oscila sem acionar o 40 A rede metálica, o tipo mais simples de filtro de ar, consiste numa rede de malha larga impregnada de óleo antes de ser colocada no filtro. A sua duração é praticamente ilimitada, desde que a rede seja desmontada periodicamente para limpeza e impregnação de óleo. Existia uma infinidade de modelos de filtros de rede metálica, alguns dos quais apresentavam uma câmara idêntica à de um silencioso de escapamento, a fim de reduzir o ruído. Carburação A depressão originada nos cilindros, quando os pistões descem no tempo de admissão, aspira o ar para os cilindros. Este atravessa o carburador, sendo a sua quantidade regulada por uma válvula rotativa, designada por borboleta, que se abre ou fecha-se, conforme a pressão exercida sobre o acelerador. A quantidade de ar aspirado depende da rotação do motor e da posição da borboleta. A função do carburador consiste em assegurar que à corrente de ar se junte a um determinado volume de gasolina para que chegue aos cilindros uma mistura correta. A gasolina, proveniente da cuba de nível constante, junta-se à corrente de ar numa passagem estreita denominada difusor, ou cone de Venturi, cujo funcionamento se baseia no princípio de que a pressão de uma corrente de ar diminui quando a sua velocidade aumenta. Quando o ar passa através do estrangulamento do difusor, a sua velocidade aumenta, sendo precisamente nessa zona de baixas pressões que a gasolina é aspirada pela corrente de ar. O fluxo do ar será o máximo quando o motor trabalhar à velocidade máxima, com a borboleta completamente aberta. Quanto maior for a velocidade do ar que passa pelo difusor, maior será a aspiração de gasolina. 41 Na prática, um carburador, tão simples como o acima descrito, não seria satisfatório pois a gasolina e o ar não têm as mesmas características de fluxo. Enquanto a densidade do ar diminui à medida que a velocidade do seu fluxo aumenta, a densidade da gasolina mantém-se constante qualquer que seja a velocidade do seu fluxo. Como a mistura gasosa, para ter uma combustão eficiente, deve forma-se em relação ao seu peso, numa proporção aproximada de 15:1 e, dado que aumentando a velocidade do ar, diminuiria a sua densidade, a mistura iria enriquecendo progressivamente, podendo tornar-se tão rica que não chegaria a inflamar-se. Existem dois processos para solucionar este problema; num carburador de difusor e jatos fixos, um certo volume de ar mistura-se com a gasolina antes de esta passar para o difusor através de um conjunto de tubos emulsionadores ou de compensadores. Já num carburador de difusor e jatos variáveis, podem variar-se a quantidade de gasolina debitada pelo pulverizador, bem como as dimensões do difusor para manter as corretas proporções de ar e gasolina. A gasolina na cuba de nível constante do carburador mantém-se sempre ao mesmo nível, graças a uma válvula acionada pela bóia. A extremidade do condutor de gasolina que desemboca no difusor deve ficar mais alta que o nível da gasolina na cuba de nível constante para evitar á saída de combustível quando o automóvel se inclina, como acontece, por exemplo, numa subida ou descida. Isto quer dizer que a gasolina tem de subir ligeiramente – cerca de 6mm – antes de se misturar com o fluxo do ar no difusor. A sucção criada pela depressão é suficiente para elevar a gasolina acima do pulverizador e para introduzi-la no difusor sob forma de pequenas gotas. Além de aspirar a gasolina e o ar, o sistema de carburação deve também pulverizar a gasolina, misturá-la perfeitamente com o ar e distribuir a mistura de maneira uniforme pelos cilindros. A gasolina apresenta-se já sob a forma de pequenas gotas quando entra no difusor. Num carburador de difusor e jatos fixos é prévia e parcialmente emulsionada com o ar; já num carburador de difusor e jatos variáveis a divisão em pequenas gotas ocorre no difusor e é provocada pela velocidade da corrente de ar. Quando a mistura gasosa passa pela borboleta, penetra no coletor por influência da depressão resultante da sucção do pistão, tendo início a vaporização das gotículas de gasolina. A velocidade da vaporização depende do valor da depressão no coletor de admissão que, por si, depende da rotação do motor e da posição da borboleta. A grande velocidade, quando a borboleta se encontra totalmente aberta, a depressão poderá ser de valor tão baixo que grande parte da gasolina permanecerá 42 em estado líquido e será transportada pelo ar ou escorrerá ao longo das paredes do coletor. À velocidade cruzeiro, com a borboleta parcialmente fechada, a depressão aumenta, pelo que a maior parte da gasolina ficará vaporizada. Nos motores em que existe um carburador para cada cilindro, o fato da mistura se encontrar parcialmente no estado líquido é irrelevante, pois esta irá vaporizar-se na câmara de explosão pela ação do calor. Porém, quando só um carburador alimenta vários cilindros, a distribuição uniforme é fundamental, mas difícil se a mistura estiver úmida. Elevando a temperatura do coletor de admissão por meio de um “ponto quente”, aquecido pelos gases de escapamento ou por água, consegue-se uma melhor vaporização da gasolina e, portanto, uma distribuição mais uniforme da mistura. Difusor jatos fixos O carburador de difusor e jatos fixos apresenta vários pulverizadores, alimentadores, jatos ou “gigleres” (do francês gicleur), e uma bomba de aceleração ou de reprise para fazer variar a riqueza da mistura de acordo com as necessidades do motor. À medida que a corrente de ar que passa pelo difusor do carburador aumenta de velocidade, o ar torna-se menos denso, pelo que na ausência de qualquer dispositivo de compensação, a mistura tornar-se-ia progressivamente mais rica até não ser possível a sua combustão. O carburador de difusor e jatos fixos soluciona este problema por meio de um sistema de compensação que mistura um determinado volume de ar na gasolina antes desta ser lançada no difusor. Na maior parte dos carburadores, a correção da proporção de ar é feita por meio de um tubo perfurado que emulsiona a mistura. O pulverizador principal fornece a gasolina ao poço de emulsão, no qual se encontra uma peça calibrada que doseia a entrada do ar para emulsão. À medida que o número de rotações do motor aumenta e o nível de gasolina no poço de emulsão desce, intensifica-se a absorção de ar através dos furos do tubo emulsionador, empobrecendo automaticamente a mistura. 45 de compensação anula o aumento da proporção de gasolina da mistura fornecida pelo pulverizador principal. O pulverizador principal tem normalmente as dimensões ideais para fornecer as misturas relativamente pobres necessárias para um funcionamento econômico a uma velocidade de cruzeiro. Para conseguir as misturas mais ricas, necessárias para acelerações máxima, o carburador de difusor e jato fixos pode incluir um circuito sobrealimentador que entra em funcionamento a média da elevada aceleração. Variação da mistura segundo as diferentes velocidades – Quando, ao arrancar com o motor frio, se puxa pelo botão do afogador ou abafador, fecha-se uma válvula com uma mola, designada por estrangulador, borboleta do afogador, ou de arranque a frio e abre-se ligeiramente a borboleta do acelerador. Deste modo reduz-se o fluxo de ar e aumenta-se a aspiração de gasolina do pulverizador principal para o difusor, obtendo-se assim a mistura mais rica necessária para o arranque. Quando o motor pega e acelera, o ar adicional absorvido obriga a borboleta a abrir parcialmente e assegura o empobrecimento da mistura, a fim de evitar o encharcamento das velas. Com o motor já quente e funcionando em marcha lenta, o movimento dos pistões provoca uma depressão no coletor de admissão. Como a borboleta do acelerador está praticamente fechada, esta depressão atua sobre o pulverizador através de mínimo ou ralenti, aspirando através deste a gasolina da parte inferior do poço de emulsão fazendo descer o seu nível. O ar necessário para se misturar com a gasolina é absorvido por um calibrador de ar mínimo. Ao pisar no pedal do acelerador, abre-se a borboleta e aumenta o fluxo de ar através do pulverizador de compensação de ar. Em conseqüência do aumento da depressão no difusor, a gasolina depois de passar pelo pulverizador principal, faz subir o nível no poço de emulsão e, ao mesmo tempo, o ar admitido no calibrador principal emulsiona a gasolina que será posteriormente pulverizada no difusor. Simultaneamente, diminui a depressão no furo de descarga do ralenti e cessa o fluxo de combustível nesse ponto. Para evitar qualquer empobrecimento indevido da mistura durante esta fase de transição, é usual existirem um ou mais orifícios de progressão que são alimentados pelo canal do circuito de ralenti. Para fornecer o combustível adicional necessário na aceleração e nas aberturas súbitas da borboleta existe uma bomba de aceleração mecânica. Esta consiste num poço (ou câmara), cheio de combustível e num pistão acionado por uma mola ou um diafragma ligado à borboleta. Quando esta se abre, o combustível é descarregado no difusor por ação do pistão e através de um injetor integrado no circuito da bomba. Em alguns carburadores, o curso da bomba pode ser regulado de modo a fornecer mais ou menos combustível. Os motores atuais e as condições da sua utilização originaram o aparecimento de uma grande variedade de carburadores de difusor e jato fixos, com uma complexa disposição de condutores de combustível, pulverizadores e orifícios de descarga. A grande vantagem destes carburadores reside na ausência de partes móveis. Difusor jatos variáveis CARBURADOR DE DIFUSOR JATOS VARIÁVEIS O carburador difusor e jato variáveis inclui, tal como o carburador de difusor e jatos fixos, uma alimentação de combustível a nível constante, uma válvula de borboleta e um difusor, ou cone de Venturi. A diferença principal entre estes dois tipos de carburador reside no fato de, no primeiro, o estreitamento do difusor poder variar de modo a manter uma depressão quase constante na zona de pulverização. 46 O estreitamento do difusor é regulado pôr um pistão cuja posição depende do grau de abertura da borboleta do acelerador. Se a borboleta estiver quase fechada, o que sucede quando o motor funciona em marcha lenta, diminui o fluxo de ar através do difusor. Corpo duplo O carburador de corpo duplo apresenta duas passagens principais de ar, cada uma com o seu difusor e pulverizador de gasolina, mas com cuba de nível constante comum. As suas borboletas estão normalmente montadas no mesmo eixo e funcionam simultaneamente. A fábrica italiana WEBER inclui-se entre os mais experimentados fabricantes de carburadores de corpo duplo. Vários dos seus modelos apresentam um pequeno difusor secundário denominado centrador de mistura, colocado ligeiramente acima do difusor principal. O combustível é fornecido ao difusor secundário, que alimenta o difusor principal. A mistura é fornecida através de um pulverizador e de um tubo de emulsão. A bomba de aceleração consiste num pistão acionado por mola e que permite a passagem de uma quantidade determinada de combustível. O tirante de acionamento do pistão é comandado por uma alavanca situada no eixo da borboleta. Uma cuba comum de nível constante fornece quantidades equivalentes de gasolina a cada corpo que tem seus próprios difusores, tubos de emulsão, pulverizadores e circuito ralenti. As duas borboletas estão normalmente montadas no mesmo eixo e são acionadas simultaneamente por um mesmo tirante. Misto CARBURADORES MISTOS O carburador misto (compound) tem dois ou mais corpos de difusor fixo que alimentam um coletor de admissão comum. As borboletas do acelerador estão dispostas de modo que sua abertura seja diferenciada, isto é, que apenas funcione uma, até que a necessidade de ar atinja um certo valor, momento em que se abre a Segunda borboleta, conseguindo-se assim, uma maior potência. 47 Esta disposição permite que o diâmetro do primeiro corpo – o corpo primário – e o respectivo difusor possam ser menores, permitindo um funcionamento suave com o motor a baixa rotação. O peso e a mola do pistão fazem-no descer, ficando apenas um espaço reduzido para a passagem do ar. Quando se pisa no acelerador e a borboleta se abre, intensifica-se a passagem do ar através do difusor e aumenta a depressão em cima do pistão. Esta obriga o pistão a subir, o que aumenta ainda mais o fluxo de ar para o motor. O débito da gasolina é regulado pôr uma agulha de ponta cónica ligada ao pistão e que penetra no pulverizador do combustível e quando pistão sobe a agulha sobe também, permitindo uma maior passagem de combustível. A posição do pulverizador e a forma da agulha assegura a proporção correta de gasolina e ar. O enriquecimento da mistura, a quando da aceleração, é assegurado pôr um amortecedor que diminui a velocidade de subida do pistão quando se abre a borboleta, o que resulta um aumento da depressão no pulverizador de combustível e um enriquecimento temporário da mistura. Como a pressão do ar no difusor variável permanece praticamente constante a qualquer regime de rotação do motor, não há necessidade de um circuito independente para a marcha lenta, como acontece no carburador de difusor e jatos fixos. Nos carburadores SOLEX e WEBER, de abertura diferenciada, a borboleta do corpo secundário pode abrir-se mecanicamente mediante articulação ligada à borboleta do corpo primário ou então pôr meio de um dispositivo pneumático que atua pôr sucção, o qual consta de uma câmara e um diafragma com haste de ligação à borboleta. Carburadores mistos – Os corpos de difusor fixo alimentam um coletor comum. O corpo primário, de menor diâmetro, assegura um funcionamento suave a baixa rotação, enquanto o corpo secundário, de maior diâmetro, aumenta a quantidade de mistura para obter o máximo de rendimento. A articulação das borboletas permite a abertura diferenciada. Injeção Num sistema de carburador, o ar aspira a gasolina, sendo a mistura resultante distribuída pelos cilindros. Num sistema de injeção, a gasolina é introduzida sob pressão – por meio de pequenos injetores, um para cada cilindro -, impulsionada por uma bomba mecânica ou elétrica. Os injetores encontram-se nos dutos de admissão, muito próximo das válvulas de admissão. Embora a quantidade de combustível injetada e o tempo de injeção variem com o tipo de sistema utilizado, a dosagem do combustível deve ser de grande precisão. No sistema de injeção verifica-se uma perfeita atomização do combustível, que permite a sua distribuição ideal se o volume de ar que penetra em cada em cada cilindro for o mesmo. Neste sistema, o fluxo de ar encontra menos obstáculos do que no sistema de carburador, já que no primeiro não existe difusor. O coletor de admissão, no sistema de injeção, apenas conduz o ar e não intervém na mistura da gasolina podendo, portanto, ter um formato que lhe permita dificultar o mínimo possível o fluxo de ar, sem necessidade de criar um foco calorífico. 50 (módulo de injeção) que é responsável pelo controle de todo o sistema. O módulo analisa as informações vindas dos vários sensores distribuídos pelo motor, processa e retorna ações de controle nos diversos atuadores, de modo a manter o motor em boas condições de consumo, desempenho, dirigibilidade e emissões de poluentes. Alguns sistemas “avisam” o motorista se há defeito em algum sensor ou atuador do sistema de injeção eletrônica. Os defeitos apresentados ficam armazenados na memória do computador (apenas no caso de injeções digitais) para posterior verificação com equipamentos apropriados. Alguns sistemas possuem ainda estratégia de atualização de parâmetros, permitindo a correção automática dos principais parâmetros (tempo de injeção, avanço da ignição, marcha-lenta, etc.) em função de variações como: envelhecimento do motor, qualidade do combustível e forma de condução do veículo. Os sistemas de injeção eletrônica oferecem uma série de vantagens em relação ao carburador: § Melhor atomização do combustível (injeção sob pressão) § Redução do efeito “retorno de chama” no coletor de admissão § Controle da mistura (relação ar/combustível) § Redução da emissão de gases poluentes pelo motor § Eliminação de ajuste de marcha lenta e mistura § Maior economia de combustível § Eliminação do afogador § Facilidade de partidas a quente e frio do motor § Melhor dirigibilidade TIPOS DE INJEÇÃO ELETRôNICA DE COMBUSTÍVEL Podemos classificar os sistemas de injeção eletrônica quanto ao número de válvulas injetoras e quanto ao sistema eletrônico empregado. Em relação ao sistema eletrônico, encontramos basicamente dois tipos: § Sistema analógico § Sistema digital Em relação ao número de válvulas injetoras, existem basicamente dois tipos: § Com apenas uma válvula injetora de combustível (single point, EFI ) § Com várias válvulas injetoras (multipoint,MPFI ) Nos sistemas com apenas uma válvula injetora, esta é responsável pela alimentação de combustível de todos os cilindros do motor. Nos sistemas com várias válvulas podem ter alimentação: § Não sequencial (quando todas válvulas injetam ao mesmo tempo) § Semi-sequencial (quando algumas válvulas injetam ao mesmo tempo que outras) § Sequencial (quando cada válvula injeta num momento diferente das outras) A escolha do tipo de injeção para cada veículo, por parte das montadoras, leva em consideração vários fatores estando entre eles: o custo de fabricação, tipo de veículo e emissão de poluentes. A injeção eletrônica controla a quantidade de combustível injetada pelos bicos injetores, para todas as condições de trabalho do motor, através do módulo de comando. Através de informações recebidas ajusta a relação ar/combustível bem próxima da relação ideal. Para calcular a quantidade de combustível precisa-se medir a quantidade de ar (massa) admitida pelo motor. Existem várias técnicas de medida de massa de ar: § Utilizando o medidor de fluxo de ar (LMM). § “speed density” (velocidade/densidade)- utilizando a rotação e o vácuo do motor (MAP) § utilizando o medidor de massa de ar – o sensor é um fio metálico aquecido (técnica de “fio quente”). 51 Além do controle de combustível, o Módulo de Injeção Eletrônica pode executar outros controles através dos chamados ATUADORES. Sensores A bomba elétrica de combustível aspira do tanque um volume de combustível superior ao que é necessário para injeção. A bomba se localiza dentro do tanque, no módulo de combustível ou em certos tipos de sistemas de injeção fora do tanque, mas próximo ao mesmo. O combustível aspirado pela bomba em excesso retorna ao tanque através de um regulador de pressão. Os injetores ou injetores com o combustível sob pressão, se mantêm fechados sob a ação de molas e são abertos por solenóides. 52 O volume de combustível injetado depende do tempo durante o qual o solenóide mantém o injetor aberto. Este tempo, por sua vez, depende do sinal que o solenóide recebe do modulo de injeção eletrônica. Este módulo está ligado a uma série de dispositivos sensíveis que atuam segundo as diversas condições do motor, tais como a pressão do ar no coletor de admissão, as temperaturas do ar, do líquido de arrefecimento e posição do acelerador ou borboleta. Os dispositivos sensíveis permitem ao módulo determinar instantaneamente o momento de abertura dos injetores. Para simplificar o sistema, os injetores abrem imediatamente antes da abertura das válvulas de admissão, o que reduz a quantidade de dispositivos necessários para os acionar. 55 fecha hermeticamente o termistor do tipo N.T.C (Negative Temperature Coefficient) cuja característica é diminuir o valor de sua resistência com o aumento da temperatura. A posição de montagem é estrategicamente escolhida de forma a levantar a efetiva temperatura do motor, independente da temperatura do radiador. Alimentado com uma tensão pelo módulo, o resistor N.T.C tem a variação da sua resistência em função da temperatura. Quanto mais baixa for a temperatura maior será o valor da resistência. Sensor de temperatura do ar SENSOR DE TEMPERATURA DO AR ATS- (Air temperature Sensor) A medição da temperatura do ar aspirado pelo motor é feita pelo sensor de temperatura colocado antes do corpo de borboletas. Normalmente são usados dois fios; um que vem tensão do módulo de injeção e outro de retorno ou referência. O sensor de temperatura é composto por um termistor do tipo NTC (Negative Temperature Coefficient) quanto maior a temperatura menor a resistência elétrica. O sinal elétrico é enviado ao módulo de injeção onde, juntamente com o sinal do sensor de pressão absoluta, é utilizado para o cálculo de densidade do ar. Alguns sistemas usam o sensor de temperatura do ar e de pressão absoluta, integrados, ou seja, na mesma peça; para isso é acrescentado um fio que retorna ao módulo de injeção, a variação do sinal de pressão absoluta. Seus valores de leitura executados pelo módulo de injeção são utilizados no cálculo do tempo de abertura dos bicos injetores e avanço de ignição. Sensor de pressão absoluta Também chamado de MAP, Manofold Absolute Pressure, está alojado no compartimento do motor e é ligado ao coletor de admissão através de um tubo de borracha, na maioria dos sistemas, o elemento sensível do sensor de pressão absoluta é constituído de uma membrana de material cerâmico. É composto de duas câmaras, separadas pelo diafragma cerâmico, uma delas fechada à vácuo e a outra exposta à pressão do coletor. O sinal derivado da deformação que sofre a membrana, antes de ser enviado ao módulo de injeção eletrônica, é amplificado por um circuito eletrônico alojado junto à membrana cerâmica. O sensor de pressão absoluta tem como função informar o módulo de injeção eletrônica a pressão absoluta na qual se encontra o coletor de admissão, valor este determinado pela rotação do motor e pela posição da borboleta de aceleração. A pressão absoluta, mais as informações dos demais sensores do sistema, vão determinar a correta proporção ar/combustível e o avanço de ignição. Este sensor em alguns sistemas também define a altitude em relação ao nível do mar que o veiculo se encontra. Sendo que, na primeira partida ou seja com o motor parado a depressão 56 do coletor de admissão é a mesma do que do ar, definindo a altitude. Esta informação é importante para o calculo da injeção, visto que quanto mais alta for a altitude em relação ao nível do mar, mais ar raro efeito encontramos. Sensor de posição da borboleta O sensor de posição da borboleta é um potenciômetro rotativo. Encontra-se ligado ao eixo da borboleta que o movimenta. O sensor de posição da borboleta é alimentado pelo módulo de injeção com uma tensão (volts) de referência, cuja saída varia de acordo com a posição da borboleta (demanda do motorista). Os valores de tensão de saída podem variar no tipo de injeção aplicada ao veículo. O módulo de injeção utiliza esta voltagem para relacionar o ângulo da borboleta de aceleração para o cáculo da quantidade de combustível requerida pelo motor. Com a borboleta fechada, a voltagem que retorna ao módulo é baixa, aumentando na medida em que a borboleta se abre. A posição da borboleta é muito importante para permitir o cálculo da rotação de marcha-lenta, avanço no ponto da ignição e quantidade de combustível a ser injetada. O módulo de injeção detecta a posição da borboleta em todo o seu percurso, através da tensão recebida de variação de voltagem. Sensor de fluxo de ar 57 O sensor de fluxo de massa de ar (MAF) utiliza um fio aquecido, sensível, para medir a quantidade de ar admitido pelo motor. O ar que passa pelo fio aquecido provoca o resfriamento do mesmo. Esse fio aquecido é mantido a 200°C acima da temperatura ambiente, medida por um fio constantemente frio. O fio que mede a temperatura ambiente é também conhecido como “cold wire“ porque não é aquecido. Temperatura ambiente significa a temperatura em torno deste sensor. O fio frio serve como referência à temperatura ambiente. O fio quente também chamado de “hot wire” é aquecido pelo circuito do MAF a 200ºC acima da temperatura ambiente. Se a temperatura ambiente for 0°C o fio quente será aquecido a 200°C. Se o dia estiver quente cerca de 40°C o fio quente será aquecido até 240°C. O ar admitido irá passar pelos dois fios e os dois serão resfriados; o circuito de controle fornecerá uma tensão para manter o fio quente na temperatura diferencial de 200°C. Este cria um sinal de tensão monitorizado pelo módulo de injeção. Com um grande fluxo de ar e com o fio resfriado, tem-se um sinal de nível alto. O resfriamento depende da massa de ar que passa no coletor de admissão. O sinal do sensor de fluxo de ar é usado pelo módulo de injeção para o cálculo da quantidade de ar que entra no coletor admissão para o motor e conseqüentemente a quantidade do combustível a ser injetado. 60 Sensor de rotação do vira brequim O sensor de rotação tem como função fornecer ao módulo de injeção um sinal elétrico o qual possibilita a sincronização do sistema (tempo de injeção, avanço de ignição e outros parâmetros) com o ponto morto superior do motor. O sinal gerado pelo sensor é obtido através da variação do fluxo magnético. Com a rotação do motor, os dentes da roda dentada ou ressaltos, passam de fronte ao sensor e este, por sua vez, fornece um sinal de tensão ao módulo de injeção a cada passagem dos dentes ou ressaltos. O sensor de rotação também pode ser chamado de detector indutivo sensível a materiais ferromagnéticos com bobina ou até sensor magnético. Como seu nome indica, este detector de proximidade somente age ante a presença de materiais ferromagnéticos. Em todos eles faz-se o uso de um campo magnético estático (geralmente produzido por ímãs permanentes incorporados no próprio detector) conduzido por um caminho de elevada relutância (geralmente o ar) que é modificada pela presença de material ferromagnético a detectar. Alguns destes sensores são montados à frente do motor, na polia e outros são montados sobre o volante do motor, ou seja, na traseira e todos com o mesmo fim, identificar a posição angular relativa do virabrequim. Sensor de rotação do eixo comando de válvulas Nos sistemas de injeção multipoint e seqüenciais, ou seja, em que em que exista um bico injetor para cada cilindro e a injeção é feita seqüencialmente, efetuada uma vez por cilindro, o sistema utiliza um sensor de fase que é montado em um dos eixos do comando de válvulas do motor no cabeçote. 61 Este sensor pode ser, em alguns tipos de injeção, do tipo hall ou de proximidade e sua aplicação tem o objetivo de informar ao módulo de injeção eletrônica, a posição do eixo do comando de válvulas, de forma a identificar quando o pistão número um está no ciclo de compressão; um sinal então é enviado ao módulo de injeção, que é utilizado para sincronizar os injetores de combustível. Módulo O módulo de injeção, durante o funcionamento do motor, elabora os dados de chegada dos circuitos periféricos (sensores) e os compara com os existentes no arquivo da memória EPROM. Imediatamente após levantar uma anomalia, ativa o procedimento de “emergência”, memoriza o inconveniente na memória RAM e substitui o valor do sensor defeituoso por um valor substituto constante. Faz posteriores controles em tempos extremamente pequenos (milisegundos) ao final dos quais transfere o inconveniente para a memória EPROM, confirma ou varia a valor substituto constante de modo tal a permitir o funcionamento do motor. Habilita, portanto, o acendimento da lâmpada de advertência no painel de instrumentos. O módulo de injeção, em caso de anomalia, não permanente (intermitente), abandona o funcionamento de emergência e, depois de alguns segundos, retoma em consideração o sinal proveniente do sensor em questão e comanda o 62 apagamento da lâmpada de advertência, retendo porém na memória a informação de defeito ocorrido. O sistema anula os defeitos memorizados imediatamente após o contador de partidas superar um certo numero de partidas a contar da última que se verificou o defeito. Conector de diagnóstico A lâmpada de advertência da injeção funciona da mesma maneira que as luzes de advertência de pressão de óleo ou bateria, ou seja, deve acender ao ser ligado o contato de ignição da chave do veículo e deve apagar alguns segundos após. Se o motor estiver em funcionamento e a lâmpada de advertência acender, sabemos que o sistema de injeção apresentou alguma falha e ai para o diagnostico e reparo do sistema é necessário um equipamento que é conectado ao terminal de diagnóstico do veículo. Aqui no Brasil, os fabricantes posicionam o conector nos mais variados lugares do veículo, já que não existe uma padronização para o conector em si, onde cada fabricante utiliza os mais diversos tipos e formatos de conectores. Nos EUA o conector de diagnósticos era chamado de ALDL (assembly line diagnostic link) ou OBD (on bord diagnostic) mas depois da padronização por legislação, passou a ser chamado de OBD II e é igual em todos os veículos fabricados nos EUA, além de ser padrão, o posicionamento do mesmo deve ser no máximo à 30 centímetros do centro do painel do veículo. È através deste conector que são feitas as leituras dos defeitos que ficam armazenados na memória do módulo de injeção eletrônica e também outros sistemas do veículo. Atuadores A principal função do sistema de injeção eletrônica é calcular e dosar adequadamente a quantidade de combustível fornecida ao motor em suas diferentes condições de funcionamento. Outra função importante é o controle da ignição, em certos sistemas controlados por um módulo de potência. As informações de estado do motor, recebidas dos sensores, são processadas pelo módulo de injeção eletrônica que aciona os atuadores de controle de combustível, do ar da marcha lenta e etc. 65 O módulo de injeção eletrônica, após ter recebido informações dos diversos sensores sobre as condições de funcionamento do motor, define o tempo de injeção, mandando um sinal ao bico injetor. 66 Atuador de marcha lenta A finalidade é controlar o ar da marcha lenta e controlar a rotação do motor, de modo a evitar a parada do motor durante as alterações de carga do mesmo. Nos sistemas monoponto é mais conhecido por motor de passo e é montado no corpo de borboleta ou TBI. Este sistema possui um motor elétrico, que efetua uma volta completa (360°) a cada X numero de passos, sendo os passos calculados pelo módulo de injeção eletrônica e enviado em forma de tensão elétrica à válvula. A válvula atuadora de marcha lenta também conhecida por IAC (idle air control valve), nos sistemas multipoint de injeção eletrônica, em muitos, casos utiliza um solenóide ao invés de um motor, mas seu funcionamento se restringe ao mesmo - controlar a quantidade de ar desviado antes da borboleta de aceleração para depois da borboleta, controlando assim a marcha lenta do motor. O módulo de injeção eletrônica também utiliza a válvula para controlar a marcha lenta acelerada com o motor frio para um rápido aquecimento. 67 Válvula de canister Tem a função de dosar o fluxo dos vapores de combustível provenientes do tanque de combustível do veículo e que são retidos em um filtro de carvão ativado (canister). Os vapores de combustível são reutilizados na admissão no motor, através do funcionamento da válvula do canister que é controlada pelo modulo de injeção eletrônica. Em alguns tipos de injeção eletrônica a válvula também é chamada de solenóide de purga do canister. Turbo A industria automobilística emprega em alguns modelos; turbinas acionadas pelos gases de escape recuperando parte da energia de movimentação que, de outra forma, se dispersaria na atmosfera. Os gases que saem da câmara de explosão possuem temperatura elevada e uma certa pressão e a turbina converte parte dessa energia mecânica. A função é aumentar a capacidade de admissão de ar no motor, gerando maior potência, pelo fato de uma explosão só ocorrer com oxigênio (ar). Para uma melhor visualização vamos imaginar um motor de 2.0L, isto é, a cada giro completo do virabrequim, este motor aspirou 2 litros de ar. Se o motor girar a 6.000 RPM, dará 100 giros num segundo, o que equivale a aspiração de 200 litros de ar por segundo. Isto causa uma deficiência em regimes muito altos de rotação. Ao saírem, os gases de escape acionam a turbina. A turbina, ao girar, movimenta o compressor, os quais estão ligados por um eixo. Ao girar, o compressor suga o ar ambiente e o comprime no motor, em alguns modelos, fazendo-o passar pelo radiador (intercooler) para resfriá-lo e assim entrar na câmara de explosão. O ar em excesso é expulso pela válvula de alivio, que é calibrada para cada tipo de motor. 70 O distribuidor, como o seu nome indica, distribui a eletricidade a cada um dos cilindros segundo a sua ordem de inflamação. Os platinados contribuem, juntamente com a bobina, para a obtenção da alta voltagem necessária. Bateria A bateria fornece a eletricidade ao sistema de ignição, ao motor de arranque, às luzes, ao painel e ao restante dos equipamentos elétricos do automóvel. A bateria é composta por um certo número de elementos – cada um dos quais fornece uma voltagem ligeiramente superior a 2 volts – ligados pôr barras metálicas. As baterias dos automóveis são constituídas por três ou seis elementos. A bateria é um elemento essencial para o armazenamento da energia necessária para o arranque do motor e o funcionamento das luzes, quando aquele está parado. A sua capacidade é medida em amperes/hora. Uma bateria de 56 A/h poderá fornecer uma corrente de 1A durante cinqüenta e seis horas e 2A durante vinte e oito horas, etc. O arranque do automóvel exige à bateria a sua potência máxima. Podem ser 300 A a 400 A para por em funcionamento um motor, enquanto uma lanterna pode exigir apenas 0,5A. Cada elemento é composto por dois conjuntos de placas (eletrodos) introduzidos numa solução de acido sulfúrico diluído (eletrólito). Um dos eletrodos é constituído 71 por placas revestidas de peróxido de chumbo e o outro por placas revestidas de chumbo esponjoso. Quando um elemento está em funcionamento, o ácido reage com as placas convertendo energia química em energia elétrica. Cria-se, assim, uma carga positiva no eletrodo de peróxido de chumbo e uma carga negativa no eletrodo de chumbo esponjoso. A corrente elétrica, medida em amperes (A), passa de um dos pólos da bateria através do circuito do automóvel e entra na bateria pelo outro pólo, fechando-se o circuito por meio do eletrólito. Como a reação química se mantém, forma-se sulfato de chumbo na superfície de ambos os eletrodos e o ácido sulfúrico converte-se em água. Quando as superfícies das duas placas ficam completamente cobertas com sulfato de chumbo, a bateria esta descarregada. Se a bateria for carregada novamente, por meio de uma corrente elétrica apropriada, os eletrodos voltarão ao seu estado original e o ácido sulfúrico é regenerado. Uma bateria poderá ficar inutilizada devido a um certo número de causas: incustração de sulfato nas placas, de modo a impedir que a corrente de carga as atravesse; desprendimento da matéria ativa das placas, e um vazamento entre os elementos que possa causar um curto circuito. Bobina Uma bateria de automóvel gera 6 ou 12 volts. Contudo, é necessária uma voltagem milhares de vezes superior para se obter a faísca que inflama a mistura de gasolina e ar. È a bobina que transforma a corrente de baixa voltagem da bateria em corrente de alta voltagem necessária para as velas. A bobina de um automóvel de tipo médio fornece as velas uma corrente com tensões até 50.000 volts. A bobina funciona segundo o principio de que, quando a corrente elétrica passa num enrolamento de fios, gera-se um campo magnético e, inversamente, quando se interrompe um campo magnético, gera-se eletricidade em qualquer enrolamento de fio dentro das linhas de força do campo magnético. 72 A voltagem original será aumentada se houver dois enrolamentos de fio, possuindo um deles mais espiras do que o outro. Os dois enrolamentos da bobina rodeiam um núcleo de ferro macio que concentra o campo magnético. O enrolamento primário é constituído por algumas centenas de espirais de fio relativamente grosso. Este enrolamento constitui a parte de baixa voltagem e recebe a corrente vinda da bateria. O enrolamento secundário é constituído por milhares de espiras de fio fino (cerca de 2000 mts.). Este enrolamento constitui a parte de alta voltagem e fornece a corrente às velas. Quando se roda a chave de ignição, a corrente elétrica vinda da bateria atinge um dos terminais da bobina, atravessa o enrolamento primário e sai pelo outro terminal do mesmo enrolamento para os platinados do distribuidor. Se os platinados estiverem fechados, a corrente passará por eles, transformando o enrolamento primário e o núcleo num eletroímã que, como tal, gerará um campo magnético. Nesse caso, a corrente completa o seu circuito através da carroceria do automóvel, voltando à bateria. 75 Quando se interrompe o campo magnético, induz-se uma voltagem no enrolamento primário, suficientemente elevada para formar um arco voltaico entre os contatos dos platinados. Como, em conseqüência, os contatos queimar-se-iam rapidamente, acrescenta-se ao circuito um condensador para suprimir o arco. O condensador esta alojado dentro do distribuidor e ligado, em paralelo, ao contato dos platinados O condensador não pode ser atravessado pela corrente, já que é formado por duas placas metálicas separadas por um isolador atuando, contudo, como depósito de energia elétrica que, de outro modo, iria provocar a formação do arco quando da separação dos contatos dos platinados. Esta energia é descarregada no primário da bobina, produzindo um efeito de inversão que acelera a interrupção do campo magnético aumentando, deste modo, a voltagem no enrolamento secundário. Distribuidor O distribuidor consiste na ligação mecânica móvel entre os componentes do sistema de ignição e motor. Desliga e liga a corrente do enrolamento primário da bobina por meio dos platinados e distribui às velas, segundo a sua ordem de ignição, ou explosão, através de um rotor, a corrente de alta voltagem produzida pela bobina. O rotor está ligado ao eixo do distribuidor e, à medida que roda, liga o terminal central da tampa que está ligado à bobina, aos cabos das velas, de acordo com a ordem de ignição. 76 Como a ordem de ignição nos cilindros determina a seqüência segundo a qual a corrente chega às velas, cada cabo de vela deve encontrar-se ligado à vela correspondente. O eixo do distribuidor é normalmente acionado pela árvore de comando, por meio de uma engrenagem helicoidal que faz girar os dois eixos à mesma velocidade. Em alguns motores, o eixo do distribuidor é acionado diretamente pelo girabrequim, por meio de um conjunto de engrenagens que reduz para a metade o número rotações do distribuidor. Ignição antecipada – Qualquer que seja a velocidade do motor, a duração da combustão é invariável. Quando o motor funciona em marcha lenta, a ignição ocorre no momento em que o pistão alcança ponto morto superior do seu curso, o que proporciona o tempo necessário para que a expansão dos gases empurre o pistão para baixo. 77 À medida que a velocidade do motor aumenta, reduz-se o intervalo de tempo entre a subida e a descida do pistão, pelo que a ignição deve ser antecipada para que haja o tempo necessário para a combustão e a expansão. Consegue-se este efeito por meio de um mecanismo centrifugo de regulagem do avanço, que pode ser completado com um dispositivo de avanço por vácuo. Como os platinados cortam a corrente Os platinados são acionados por um excêntrico que faz parte do eixo do distribuidor. O excêntrico possui tantos ressaltos quanto o número de cilindros no motor. À medida que o eixo roda, o excêntrico aciona um braço ou patin, que obriga os contatos dos platinados a separarem-se. Terminada a ação do excêntrico, os contatos fecham por meio da sua mola. A formação de arcos voltaicos (faíscas) entre os contatos é reduzida por um condensador ligado entre ambos. Quando os contatos se separam, a corrente de baixa voltagem, vinda da bateria através do enrolamento primário da bobina, é desligada, pelo que o campo magnético fica interrompido. Deste modo, induz-se uma corrente de alta voltagem no enrolamento secundário da bobina, passando essa corrente, através de um cabo, para o campo do distribuidor e, daí, através do eletrodo do rotor, para um dos eletrodos metálicos exteriores da tampa. Não existe um contato real entre o rotor e os terminais da tampa do distribuidor. A folga existente entre o rotor e os terminais não é suficientemente grande para dificultar os impulsos de alta voltagem transmitidos pela bobina a cada uma das velas. 80 Velas As velas produzem faíscas elétricas que inflamam a mistura de gasolina e ar nos cilindros do motor. Uma vela é constituída por um eletrodo metálico que atravessa a parte central do isolador de porcelana – pólo central. À volta da parte inferior do isolador existe um corpo metálico que se enrosca na cabeça dos cilindros. Soldado à parte inferior deste corpo e dessa maneira ligado à massa através da cabeça dos cilindros, encontra-se outro eletrodo – o pólo da massa. Uma pequena folga separa este eletrodo da extremidade do eletrodo central. A corrente de alta tensão, proveniente do distribuidor, passa pelo eletrodo central e transpõe essa folga sob a forma de uma faísca. Para obter um bom rendimento do motor, a faísca deverá ser suficientemente intensa para inflamar eficazmente a mistura de gasolina e ar, o que significa que a 81 folga deve ser relativamente grande. Porém, quanto maior for esta folga, maior será também a voltagem necessária para fazer soltar a faísca. As folgas recomendadas para as velas dos automóveis modernos oscilam entre 0,5 a 1,0 mm. A folga deve ser verificada periodicamente, já que os eletrodos desgastam-se lentamente com o uso e podem ficar cobertos de resíduos. Uma folga de dimensões incorretas não constitui o único fator responsável por uma faísca fraca e irregular, uma ruptura no isolador ou uma película de óleo ou de água na sua superfície exterior poderão provocar fugas de eletricidade e dar origem a uma faísca fraca ou mesmo impedir que esta salte entre os eletrodos, sob a pressão de compressão existente dentro de cada cilindro. Entre a vela e a cabeça dos cilindros existe uma junta para assegurar a vedação dos gases. Algumas velas apresentam, em vez da junta, uma base cônica que se aloja na cabeça dos cilindros. Sistema de lubrificação A função do óleo no motor não consiste apenas em reduzir o atrito e o desgaste dos pistões, apoios e outras peças móveis, mas também em evitar o escapamento dos gases quentes a alta pressão, dissipar o calor da zonas quentes para o ar, através do Carter, diminuir a corrosão e absorver alguns dos resíduos nocivos da combustão. O óleo encontra-se no Carter, na parte inferior do motor e é enviado por uma bomba para os apoios principais através de um filtro. A bomba impulsiona 82 normalmente vários litros de óleo por minuto. A partir dos apoios principais, o óleo segue, através dos orifícios de alimentação ou canais, para passagens abertas no virabrequim e para os apoios (bronzinas, ou capas) das cabeças das bielas. As paredes dos cilindros e as buchas dos pinos dos pistões são lubrificados por aspersão de óleo que sai pelos lados dos apoios e é dispersado pela rotação da árvore de manivelas. O óleo em excesso é retirado dos cilindros por segmentos ou aneis raspadores existentes nos pistões e regressa ao Carter. Um desvio do circuito principal alimenta cada um dos apoios da árvore de comando. Em grande número de motores com válvulas na cabeça existe ainda um outro desvio que conduz o óleo aos apoios do eixo dos balancins. O óleo retorna depois ao Carter, onde o excesso de calor é dissipado no ar. Outro desvio alimenta o comando da árvore de comando, por engrenagens ou por corrente e, em alguns casos, lubrifica e pressiona o esticador da referida corrente. Nenhum eixo se ajusta perfeitamente ao seu apoio pois, caso contrário, não conseguiria rodar. Existe uma folga diminuta entre as superfícies (cerca de 0,07 mm nos apoios das cabeças das bielas, com 50 mm de diâmetro), formando-se no apoio uma película de óleo na área onde a folga é maior. A rotação do eixo aspira o óleo para o ponto de carga máxima, onde a folga é mínima, forçando o óleo a tomar a forma de uma “cunha” entre o eixo e o apoio. Desgaste do motor – Um fluxo insuficiente de lubrificante dará origem a um desgaste rápido, ou gripagem, das peças móveis do motor, devido ao atrito entre os metais. Também provocará um funcionamento deficiente do motor ao destruir as superfícies dos segmentos ou anéis dos pistões, permitindo a passagem de gases muito quentes. 85 A temperatura num motor é bastante variável. O motor deverá arrancar com temperaturas abaixo do ponto de congelamento; contudo, a temperatura ideal do cárter, durante o funcionamento do motor, é de cerca de 82ºC., temperatura essa que permite a vaporização da umidade que se forma durante a combustão. A temperatura nos mancais do virabrequim e nas bronzinas das bielas deverá exceder em 10ºC. a do cárter enquanto a dos segmentos dos pistões, acelerando a fundo, poderá atingir 230ºC . A viscosidade de um óleo é identificada pelo seu número SAE, designação que deriva do nome da sociedade americana Society of Automotive Engineers, que estabeleceu as normas de viscosidade. Os números SAE 20, 30, 40 e 50 indicam que a viscosidade do óleo se mantém dentro de certos limites a temperaturas de 99ºC. Os números SAE 5W, 10W e 20W indicam que viscosidade se mantém dentro de limites determinados à temperatura de 18ºC. Estes números apenas especificam a viscosidade, não se referindo a outras características; quanto mais baixo for o número SAE, mais fluido será o óleo. Um óleo multigrade tem um índice de viscosidade elevado, ou seja, a sua viscosidade altera-se pouco com a temperatura. Poderá ter; por exemplo, uma especificação SAE 10W/30 ou 20W/50. Um óleo multigrade tem a vantagem de permitir um arranque mais fácil em tempo frio, pôr ser muito fluido a baixa temperatura mantendo, contudo, as suas qualidades de lubrificação a elevadas temperaturas. Aditivos detergentes e dispersantes – Alguns produtos parcialmente queimados conseguem passar pelos segmentos dos pistões e chegar até o cárter. Estes produtos incluem ácidos, alcatrões e materiais carbonizados que devem ser absorvidos pelo óleo e mantidos em suspensão. Se não forem absorvidos, esses produtos formam depósitos nas caixas dos segmentos dos pistões e nas passagens de óleo, obstruindo a circulação do óleo e originando engripamento dos anéis dos pistões. Um óleo que contenha aditivos dispersantes e detergentes manterá esses produtos em suspensão sempre que as dimensões destes forem suficientemente reduzidas, isto é, quase moleculares. Na ausência destes aditivos, esses produtos coagulam, formando uma espécie de lama ou qualquer outro depósito. Mudanças de óleo – É conveniente respeitar os prazos recomendados pelos fabricantes dos automóveis para substituição do óleo. Esses períodos deverão mesmo ser encurtados para três ou quatro meses, se o automóvel for somente utilizado em pequenos trajetos. A razão para maior freqüência da mudança de óleo, neste caso, reside no fato de quantidade de aditivos detergentes e dispersantes presente no óleo ser pequena e consumir-se com muito maior rapidez nas condições de repetidos arranques e paradas do que em percursos longos, em que o motor funciona a uma temperatura estável. Filtro de óleo Na maioria dos motores o óleo, antes de penetrar na bomba, atravessa um filtro de rede que retém a maioria das impurezas. No exterior do cárter encontra-se normalmente um filtro através do qual passa a totalidade do óleo. Como este filtro pode eventualmente ficar obstruído com acúmulo de impurezas, uma válvula de derivação nele existente abre-se quando a pressão, através do filtro, excede um determinado valor, normalmente 0,7 a 1,5 kg/cm2. Esta válvula também se abre quando o óleo está frio e, portanto, muito espesso. 86 Filtros centrífugos – Este tipo de filtro consiste num recipiente circular que, ao rodar a grande velocidade, expele as partículas sólidas, que são retidas nas suas paredes enquanto o óleo passa para através de um condutor central. Bomba de óleo Emprega-se geralmente dois tipos de bombas de óleo: a bomba de engrenagens e a bomba do rotor. Qualquer uma delas é normalmente acionada à partir da árvore de comando ou do virabrequim. A bomba de engrenagens compõe-se de um de um par de rodas dentadas engrenadas entre si. Quando as engrenagens rodam, o espaço entre os dentes enche-se de óleo proveniente do cárter. Quando os dentes se engrenam, o óleo é impelido sob pressão. A bomba de rotor é constituída por um cilindro dentro do qual se movem dois rotores, um exterior e um interior, sendo o espaço entre estes preenchido com óleo. 87 Tal como acontece com a bomba de engrenagens o óleo é aspirado do cárter nesta bomba e depois enviado para o motor. Quando o óleo está frio, a pressão necessária para impelir através das pequenas folgas dos apoios poderá ser demasiado elevada, a ponto de danificar as bombas. Assim, quando a pressão é excessiva, uma válvula de descarga existente no interior da bomba abre, a fim de deixar passar algum óleo para o cárter. Respiro – Os orifícios de ventilação do cárter, permitem o escapamento dos gases, que entram no cárter depois de passarem os segmentos ou anéis do pistão. Sistema de arrefecimento Menos de uma quarta parte de energia calorífica desenvolvida num motor de explosão é convertida em trabalho útil. O calor restante deve ser dissipado para que nenhum dos componentes do motor aqueça a ponto de deixar de funcionar. Quando se pisa a fundo no acelerador, cerca de 36% do calor desaparecem pelo sistema de escapamento, 7% perdem-se devido a atritos internos e no aquecimento do óleo de lubrificação e 33% dissipam-se no sistema de resfriamento. 90 Resfriamento de ar O resfriamento por ar sem condutores próprios e sem circulação forçada por meio de ventilador não permite um efeito uniforme em todos os cilindros, principalmente nos motores em linha pois, neste caso, os cilindros montados atrás seriam pouco arrefecidos pela corrente de ar proveniente da grade existente na frente do carro. Para resolver esta dificuldade, os motores arrefecidos a ar possuem um ventilador que faz incidir sobre os cilindros uma corrente de ar. Um controle termostático regula o fluxo do ar para garantir as condições térmicas satisfatórias para o funcionamento do motor. Um motor arrefecido por ar é muito mais ruidoso que um motor arrefecido por água, já que a camisa de água amortece uma grande parte do ruído do motor. Radiador O radiador destina-se a dissipar o calor da água quente que circula no sistema de arrefecimento. É composto por dois depósitos de água: um superior e outro inferior, entre os quais existe um corpo central – a colméia -, normalmente constituído por tubos metálicos de paredes delgadas. A água quente entra no depósito superior, vinda da camisa de água, através do termostato e desce pelo interior da colméia, dissipando o calor. Os tubos têm aletas que proporcionam uma maior área de contato com o ar de resfriamento. 91 A água arrefecida passa para o depósito inferior e retorna ao motor através da bomba de água. Em grande número de radiadores existe um espaço entre a superfície da água e a parte de cima e interior do depósito superior, a fim de permitir a expansão da água. Qualquer água (ou vapor) em excesso escorre para o solo pelo tubo-ladrão do radiador. Em alguns radiadores atuais, o tubo-ladrão conduz a água para um depósito de expansão suplementar, separado do radiador. Quando a água arrefece, regressa ao depósito superior do radiador. Este dispositivo é designado por um sistema de circuito fechado. 92 Válvula termostática A função do termostato consiste em impedir a passagem da água fria vinda do radiador enquanto o motor está frio. Utilizam-se dois tipos de termostato: o de fole e o de elemento de cera. O primeiro é constituído por uma cápsula em forma de sanfona cilíndrica, de chapa de metal extremamente delgada, contendo um fluído volátil. O termostato de elemento de cera compõe-se de um diafragma de borracha rodeado por cera e com uma haste em forma de lápis. A cera está contida numa cápsula estanque de latão em contato com a água. Enquanto a cera está fria, a válvula permanece fechada e a água não pode circular entre o radiador e o motor. Quando a cera aquece, derrete-se e expande-se, empurrando a cápsula para baixo, abrindo assim a válvula. Aditivo A água misturada ao aditivo do radiador deve ser trocada anualmente, já que o aquece e esfria do dia a dia muda as características do aditivo do liquido de arrefecimento. Em tempo frio, a água pode congelar e provocar a ruptura do radiador ou do bloco do motor de um automóvel que tenha ficado exposto às condições atmosféricas. É também possível que o radiador congele e arrebente enquanto o automóvel estiver circulando – ainda que a água no motor esteja fervendo -, devido ao fato de o termostato não permitir a passagem da água 95 escapamento tipo médio a pouco mais que um ou dois anos. Porém, a utilização de aço aluminizado ou, melhor ainda, de aço inoxidável prolonga a duração de um sistema de escapamento. Os silenciosos e a tubulação do sistema de escapamento enferrujam-se, quer interna ou externamente. Cada litro de gasolina queimada produz 1.1. de água – contendo sais de chumbo e ácidos -, que passa para o sistema de escapamento sob a forma de gás ou de vapor. Se o silencioso ou o tubo de escapamento estiverem frios, como sucede no primeiro arranque do dia, estes elementos corrosivos condensam-se nas superfícies interiores do sistema de escapamento, onde atuam como ácidos fracos que acabam por atacar o metal. Assim cada vez que um automóvel arranca com o motor frio, dá-se uma pequena corrosão interior. É por esta a razão que um automóvel utilizado em pequenos trajetos necessita de substituições mais vezes no sistema de escapamento do que outro utilizado normalmente em longos percursos. Quando um automóvel de dimensões médias circula com o porta-malas aberto, as fumaças de escapamento podem penetrar, por turbulência, no interior do veículo e causar perda de consciência ao motorista. Deve-se, portanto, manter fechado o porta-malas ou a porta traseira – no caso de um automóvel de cinco portas – quando em movimento. Se tal não for possível, é necessário dirigir com as janelas laterais abertas para assegurar a renovação do ar. Os gases de escapamento incluem monóxido de carbono, gás inodoro, mas tóxico, e anidrido carbônico, que pode causar sufocação. Um escapamento de gás próximo de uma tubulação de escapamento quente pode ainda causar um incêndio. Os escapamentos de gás no sistema de escapamento do veículo não devem, portanto, serem menosprezados. Escapamento com fumaças – A presença de fumaça negra nos gases de escapamento ou de uma camada de fuligem no tubo de escapamento indicam ser a mistura demasiadamente rica. A saída de fumaça azulada, principalmente ao acelerar, após uma descida com o automóvel engrenado, indica a penetração de óleo nas câmaras de explosão, através dos anéis dos pistões ou das guias das válvulas. Coletores Expulsão dos gases provenientes do motor – O sistema de escapamento conduz os gases quentes, resultantes da combustão, desde o motor e através do coletor, tubo de escapamento e silencioso, para o tubo de saída, que o lança na atmosfera. Durante este processo, o silencioso por meio de redução, deflecção ou absorção das ondas sonoras, diminui o ruído originado pela descarga, através da abertura de escapamento, dos gases provenientes da câmara de explosão. 96 Catalizador O catalisador é uma peça formada por núcleo cerâmico ou metálico que transforma grande parte dos gases tóxicos do motor em gases inofensivos, através das reações químicas ocorridas dentro deste componente. O catalisador localiza-se no sistema de escapamento, depois do coletor de gases de escape e próximo ao motor, para melhor aproveitar a temperatura decorrente da combustão. O termo conversos catalítico designa genericamente um reator metálico instalado no sistema de escapamento. Este reator, de aço inoxidável, contém o catalisador propriamente dito, que é constituído de uma colmeia cerâmica ou metálica (monolito) impregnada com substâncias ativas. Essa colmeia é formada por milhares de minúsculos canais (células), por onde passam os gases poluentes. As paredes destes canais são recobertas com óxidos de metais, que criam uma superfície de contato cuja área é equivalente a 2 campos de futebol. Externamente, o monolito é envolvido por uma manta amortecedora destinada a protegê-lo contra vibrações e choques. As substâncias ativas são o óxido de alumínio, metais preciosos cataliticamente ativos (Pd, Pt e Rh) e promotores (substâncias que aumentam a ação catalítica dos metais preciosos). Somente as substâncias ativas são responsáveis pelos efeitos catalíticos; a colmeia cerâmica ou metálica serve apenas como material – suporte. 97 A colmeia cerâmica consiste de corderita. Este material de magnésio – alumínio – sílica é distinto particularmente pela sua alta resistência à temperatura. A colmeia metálica consiste de uma liga especial, a qual é enrolada e soldada através de uma técnica específica, formando o suporte metálico. A espessura da parede desta chapa de aço ferrítico, altamente resistente ao calor, é de aproximadamente 0,04 a 0,07 mm. Substâncias catalíticas O real efeito de um catalisador é determinado por suas substâncias cataliticamente ativas impregnadas. O monolito cataliticamente inativo é impregnado, através de um complexo processo químico de produção, com uma camada de óxido denominada camada de preparação superficial. Os metais preciosos são então distribuídos sobre esta camada. A camada “ativa” é constituída de óxidos de alumínio e promotores, isto é, aditivos que aumentam o efeito catalítico dos metais preciosos. O óxido de alumínio amplia a área superficial especifica a valores que excedem 20.000 mts. Quadrados por litro de volume do catalisador. Os metais preciosos, - platina, ródio e paládio – são usados 1,5 g em média, individualmente ou de forma combinada, dependendo do projeto do catalisador, o qual é desenvolvido em estreita cooperação com os fabricantes de veículos, propiciando uma vida útil do produto, de no mínimo 80.000 km. Embora o catalisador seja muito bom no controle de emissões, quando o motor e seus sistemas relacionados não estiverem funcionando adequadamente, haverá ainda um aumento de emissões indesejáveis do escapamento. Estas emissões podem ser analisadas para fins de diagnóstico. HIDROCARBONETOS ( HC) Os hidrocarbonetos nos informam quanto combustível disponível não foi queimado. Baixas emissões de HC são uma boa indicação de que todo o combustível está sendo queimado. Altas emissões de HC estão freqüentemente relacionadas com problemas no sistema de ignição, tais como falha de combustão ou distribuição imprópria.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved