(Parte 4 de 6)

Harnessing the Gulf Stream

These underwater structures divert a portion of the flow of the Gulf Stream and other currents through turbines to generate clean electric power. The turbines are slow turning and would have centrifugal separators and deflectors to prevent harm to marine life.

Bering Strait Dam

A major development in the future could be the construction of a land bridge or tunnel across the Bering Strait. The primary function of this span would be to generate electrical power and house facilities for collecting and processing marine

Pipelines to conduct fresh water from he world may also be incorporated. e a physical link between Asia and e as an avenue for social and cultural

Geothermal energy, with refinements in conversion technologies, can take a more prominent role in reducing the threat of global warming. Readily available in many regions throughout the world, this source alone would provide enough clean energy for the next thousand years.

exchange

products. Beneath and above the ocean surface would be tunnels to transport passengers and materials. melting icebergs to other parts of t Not only could this structure provid North America, it could also serv Geothermal Energy Plants

Chapter Seven Cities that Think

Designing the Future

Local governments spend lots of time and resources attempting to update our current cities, roads, and transportation systems. The cost of operation and maintenance and overall inefficiency is high. It is less expensive to build newer cities from the ground up than to restore and maintain old ones, just as it is more efficient and less costly to design flexible, state of the art production methods than it is to attempt to upgrade obsolete factories.

To have a world without pollution and waste, yet keep parks, playgrounds, art and music centers, schools, and health care available to everyone without a price tag, requires profound changes in the way we plan our cities as well as our lifestyles.

To phase in this new system, the first city will test the validity of design parameters and make necessary changes as needed. This new social direction could be promoted on many fronts with books, magazines, TV, radio, seminars, theater, and theme parks, We could also design and experiment with automated building processes for the next city.

Innovative multi-dimensional circular cities combine the most sophisticated resources and construction techniques available. The geometrically elegant circular arrangement, surrounded by parks and gardens, is designed to operate with minimum energy to obtain the highest possible standard of living for everyone. This city design uses the best of clean technology in harmony with local ecology.

The design and development of these new cities emphasizes the restoration and protection of the environment. It must be understood that technology without human concern is meaningless.

The new cities would provide a total environment with clean air and water, health care, good nutrition, entertainment, access to information, and education for all. There would be art and music centers, fully equipped machine shops, science labs, hobby and sports areas, and manufacturing districts. These new cities would also provide all manner of recreation within a short distance of the residential district. Waste recycling, renewable and clean power generating systems, and all services would be managed with integrated, cybernated methods. The management of one’s personal life, his/her life style and personal preferences, is left entirely to the individual.

Some cities can be circular while others may be linear, underground, or constructed as floating cities in the sea (we will get to them later on). Many cities would be designed as total enclosure systems, much like a cruise ship outfitted for a six-month cruise. They would contain residences, theaters, parks, recreation, entertainment centers, health care and educational facilities, and all the requirements and amenities for a total living environment. Everything in these cities would be as near to a selfcontained system as conditions allow. In northern locations, some could be partially underground.

In planning the cities, computers will help determine the design based on the most comprehensive analysis of data about the environment and human needs. For example, the characteristics of the population in a given area determine how many hospitals and schools are built and the equipment needed. Some medical systems would be mobile and others prefabricated on land and sea. Eventually entire cities would be automatically assembled on site from standardized, prefabricated sections made in automated plants. Through this “systems approach” method -- we can’t emphasize this too much -- we will be able to give all people a very high standard of living in the shortest possible time.

This permits a wide range of flexibility in design for changes and takes advantage of interchangeable units. Cities take on new and different appearances depending on how they are used. Each city is unique. It does not reduce the lives of people to a subsistence level; rather, it makes available all the amenities that modern science and technology can provide. Even the wealthiest people of the past could not achieve a standard of living equal to that in these new cities, which will also maximize safety and peace of mind.

The structures will be made of newer materials such as a sandwich-type assembly that is semi-flexible with an inner foam core and a glazed ceramic outer surface to allow for expansion and contraction without fracture. This requires no maintenance. The thin shell construction can be mass-produced in a matter of hours. This type of construction suffers little or no damage from earthquakes, hurricanes, termites, and fires. Windows will be controlled electronically to shade or darken external illumination and come equipped with computer-controlled, automatic cleaning systems that require no human labor.

Innovative technologies make it possible to conserve resources for lesserdeveloped regions, without sacrificing any of the conveniences of advanced living. It is only through such innovations that our end goal of a high standard of living for the entire human race can be achieved.

These cities coordinate production and distribution, operating a balanced-load economy so there is no over or under production. Accomplishing this requires an autonomic nervous system (environmental sensors) integrated into all areas of the social complex.

For example, in the agricultural belt electronic probes embedded in the soil automatically maintain a constant inventory of the water table, soil conditions, nutrients, etc., and act appropriately without the need for human intervention as conditions change. This method of industrial electronic feedback would be applied to the entire system.

The cities would function as evolving, integrated organisms rather than as static structures because their design accommodates to change. These total environments will permit the widest possible range of individuality and creativity for those living in them.

Design Consideration

At one time, architectural adornments were an integral part of construction. The lofty columns and colonnaded porticos of ancient Greece and Rome were necessary components of their structures. With the advent of newer, lightweight materials and engineering improvements, we can now span greater distances without columns or other intervening support structures.

The resource-based economy would no longer engage in the conscious withdrawal of efficiency to maintain designs felt to be impressive. If we continue to design our buildings with conspicuous waste and decoration, we lessen the standard of living for others by using resources wastefully. Designing a building with many artificial projections does not indicate originality, creativity, or individuality. Individuality is expressed by our unique way of thinking about ourselves and the world around us, not by our external appearance.

This is not to detract from beautiful structures created in the past with the available and limited technology available at the time. However, the continuing application of ancient methods of construction retards innovative and creative thinking, which is necessary to an emergent culture.

The intelligent use of resources incorporated into structures considerably simplifies our lifestyle and reduces waste and maintenance. These new cities would provide for the needs of the inhabitants through an efficient allocation of resources and materials, in an energy-conscious and pollution-free environment.

Homes

appear surrealFor example, homes can be sheltered from the weather

To many in the early twenty-first century, the homes of the future may by electronic means. The furnishings may consist of totally different configurations that automatically adjust to our body contours. New technologies will make walls entirely transparent so occupants can view the surrounding landscape without anyone on the outside seeing in. Daylight can be softened and subdued according to the preference of the occupants. These buildings would provide a barrier to sound, insects, and dust, and maintain the desired internal temperature. Telephones would be entirely invisible and a component part of the interior structure, focusing sound to your ear by electronic means. The building’s materials will generate energy and control their own surrounding climate.

With the intelligent application of humane technologies, a wide array of uniquely individual homes can be provided. Structural elements would be flexible and coherently arranged to best serve each individual. Prefabricated modular homes will embody a high degree of flexibility inconceivable in the past. They can be built in any place one might want, amidst forests, atop mountains, or on remote islands. They can be designed as self-contained residences with thermal generators, heat concentrators, and photovoltaic arrays built into the skin of the building. Thermo panes would tint out bright sunlight using variable patterns of shading. All these features are controlled by the occupant and supply more than enough energy to operate the entire household.

Homes will also contain a precise combination of dissimilar metals utilizing the thermocouple effect for heating and cooling. Other materials embedded in solid-state plastic or ceramic materials would make up the structure of the home. With this application, the warmer it gets on the outside, the cooler it becomes on the inside. This method serves to heat or cool the buildings. The interiors of the homes would be designed to suit the preferences of the individuals.

Transportation

When travel outside the city is desired, computer-guided vehicles for land, sea, air, space and beyond can transport passengers and freight. For rapid movement of passengers on land across viaducts, bridges, and tunnels, high-speed mag-lev trains span great distances and will efficiently replace most aircraft transportation. Some passenger compartments in the transport units can be transferred from the moving train during transit, which eliminates waiting time at stations. Rail, sea, and undersea craft can handle most freight. Many of the transport units have detachable components and contain standardized containers making them easy to transfer.

In the cities various types of escalators, elevators, conveyors, and transveyors can be designed to move in all directions throughout, even up the sides of buildings. They can be interconnected with other transport systems and extend into homes as well.

Most of the smaller transportation units for people can be operated by voice control. When voice control is not practical or possible, alternative methods such as keypads can be used. Without large corporations controlling automobile manufacture for profit, all transportation systems can be designed as modular, continuously updated, and provided with the latest developments in technology.

Circular City

The outer perimeter is part of the recreational area with golf courses, hiking and biking trails, and opportunities for water sports. A waterway surrounds the agricultural belt with its enclosed, transparent buildings. The application of newer technologies eliminates, once and for all, the use of dangerous chemicals and pesticides. Continuing into the city center, eight green sectors provide clean, renewable sources of energy using wind, thermal, and solar energy devices. The residential belt features beautiful landscaping, lakes, and winding streams. The homes and apartments are gracefully contoured to blend in with the landscape. A wide range of innovative architecture provides many choices for the occupants.

Adjacent to the residential district a wide selection of healthy, organically-grown foods are available on a 24-hour basis. Next are the apartments and design centers, which surround the central dome. Eight domes house the science, art, music, research, exhibition, entertainment, and conference centers, which are all fully equipped and available to everyone.

The central dome, or “theme center,” houses the cybernated system, educational facilities, health center, and facilities for shopping, communications, networking, and childcare. In addition, it serves as the core for most transportation services, which take the form of horizontal, vertical, radial, and circular conveyors that safely move passengers anywhere within the city. This system facilitates efficient transportation for city residents, eliminating the need for automobiles. City-to-city transportation is provided by monorail and electrically operated vehicles.

Total Enclosure Cities

Many cities are designed as total enclosure systems, much like a cruise ship outfitted for a six-month cruise. They contain residences, theaters, parks, recreation, entertainment centers, health care, and educational facilities, and all the requirements and amenities for a total living environment. Everything in these cities is as near to a self-contained system as conditions allow. In northern locations or uninhabitable areas, cities can be subterranean.

Cybernated Complex

This cybernated complex utilizes advanced imaging technology to project a 3-D "virtual" image of the earth in real time. It utilizes satellite communication systems to provide information on worldwide weather conditions, ocean currents, resource inventories, population, agricultural conditions, and fish and animal migration patterns. The interconnected cybernated complexes represent the brain and nervous system of the entire world civilization. All information is available on demand to anyone via the Internet. This single site manages our common heritage of resources, and monitors the carrying capacity and health of Earth.

University City

This University of Architecture and Environmental Studies, or "World University," is a testing ground for each phase of architectural development. This is a "living” and continually evolving research institute open to all. Student performance is based on "competence accreditation" and research findings are applied directly to the social structure to benefit all of humanity.

(Parte 4 de 6)

Comentários