Handbook of Battery Materials

Handbook of Battery Materials

(Parte 1 de 5)

Jurgen 0. Besenhard (Ed.) Handbook of Battery Materials

8 WILEY-VCH

Further Titles of Interest

K. Kordesch, G. Simader Fuel Cells and Their Applications ISBN 3-527-28579-2

M. Wakihara, 0. Yamamotu (Eds.) Lithium Ion Batteries

Fundamentals and Performance ISBN 3-527-28566-0

Jurgen 0. Besenhard (Ed.)

Handbook of

Batterv J

Materials

Weinheim - New York Chichester @ WILEY-VCH Brisbane Singapore Toronto

Prof. Dr. J. 0. Besenhard Institut fur Chemische Technologie Anorganischer Stoffe Technische Universitlt Graz Stremayrgasse 16/I A-80 10 Graz Austria

This book was carefully produced. Nevertheless, authors, editors and publisher do not warrant the information contained therein to be free oferrors. Readers are advised to keep in mind that statements,

data, illustrations, procedural details or other items may inadvertently be inaccurate

Library of Congress Card No. applied for.

A catalogue record for this book is available from the British Library.

Deutsche Bibliothek Cataloguing-in-Publicativn Data

Handbook of battery materials / ed. Jurgen 0. Besenhard. - Weinheirn ; New York ; Chichester ; Brisbane ; Singapore ; Toronto : Wilcy-VCH, I999 ISBN 3-527-29469-4

0 WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 1999 Printed on acid-free and chlorine-free paper. All rights reserved (including those oftranslation in other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Composition: Data Source Systems, 1900 Timisoara, Romania. Printing: betz-druck gmhh, D-6429 I

Darmstadt. Bookbinding: J. Schaffer GmbH & Co. KG., D-67269 Griinstadt. Printed in the Federal Republic of Germany.

Preface

At present batteries worth more than 30 billion USD are produced every year and the de- mand is still increasing rapidly as more and more mobile electronic end electric devices ranging from mobile phones to electric vehicles are entering into our life. The various ma- terials required to manufacture these batteries are mostly supplied by the chemical industry. Ten thousands of chemists, physicists and material scientists are focusing on the develop- ment of new materials for energy storage and conversion. As the performance of the bat- tery system is in many cases a key issue deciding the market success of a cordless product there is in fact a kind of worldwide race for advanced batteries.

Unfortunately, the chemistry of batteries is usually dealt with in a fairly superficial manner in common textbooks of inorganic or solid state chemistry. On the other hand, there are many books specialising on batteries, however, concentrating mostly on their basic electro- chemistry, performance and construction. The intention of this book is to fill the gap and to provide deeper insight into chemical as well as electrochemical reactions and processes related with the discharging and charging of batteries. The Handbook of Battery Materials is a comprehensive source of detailed information written by leading experts. I believe it will be a valuable tool for all those who are teaching inorganic chemistry, polymer chem- istry or materials science at a graduate or higher level and, of course, for all those who are doing research in the fields of materials for energy storage and conversion.

There are countless materials which have been proposed and investigated for battery appli- cations. The Handbook of Battery Materials concentrates on those materials which have already found real and considerable practical applications and I hope that colleagues who do not find their "babies" included will understand.

The organization of the Handbook of Battery Materials is simple, dividing between aque- ous electrolyte batteries and alkali metal batteries and further in anodes, cathodes, electro- lytes and separators. There are also three more general chapters about thermodynamics and mechanistics of electrode reactions, practical batteries and the global competition of pri- mary and secondary batteries.

Finally I would like to express my thanks to all the authors who contributed to this volume, to colleagues who supported this work by their advise and to Karin Scholze who managed all the practical problems related with the collection and compilation of 23 articles in due term.

Graz, October 1998 Jurgen 0. Besenhard

List of ContributorsXI

Contents

Part I: Fundamentals and General Aspects of Electrochemical Power Sources

1.1 1.2 1.2.1 1.2.2

I . 2.3 1.2.4 1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.4 I . 4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6 1.4.7 1.4.8 1.5

Thermodynamics and Mechanistics1

Giinther Hamhitzer. Karsten Pinkwart. Christiane Ripp. Christian Schiller

Electrochemical Power Sources1
Electrochemical Fundamentals2
The Electrochemical Cell2
The Electrochemical Series of Metals4
Discharging6
Charging7
Thermodynamics7
Electrode Processes at Equilibrium7
Reaction Free Energy AG and Equilibrium Cell Voltage As,,8
Concentration Dependence of the Equilibrium Cell Voltage9
Temperature Dependence of Equilibrium Cell Voltage10
Pressure Dependence of the Equilibrium Cell Voltage1
Overpotential of Half-Cells and Internal Resistance12
Terminal Voltage14
Current-Voltage Diagram14
Discharge Characteristic14
Characteristic Line of Charge15
Overcharge Reactions15
Coulometric Efficiency and Energy Efficiency15
Cycle Life16
Specific Energy and Energy Density16
References17
Criteria for the Assessment of Batteries13
2 Practical Batteries19

Koji Nishio and Nobuhiro Furukawa

2.1 Alkaline-Manganese Batteries19
2.2 Nickel-Cadmium Batteries21
2.3 Nickel-Metal Hydride Batteries26

2.4 Lithium Primary Batteries .................................................................................... 31

VIIl Contents

2.4.1 2.4.2 2.4.3 2.5 2.5. I 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6

2.5.7 2.5.8

2.6 2.6.1 2.6.2 2.6.3 2.7 2.8

Lithium-Manganese Dioxide Batteries32
Lithium-Carbon Monofluoride Batteries38
Lithium-Thionyl chloride batteries39
Coin-Type Lithium Secondary Batteries40
Secondary Lithium-Manganese Dioxide Batteries40
Lithium-Vanadium Oxide Seconddry Batteries4
Lithium-Polyaniline Batteries4
Secondary Li-LGH-Vanadium Oxide Batteries45
Secondary Lithium-Polyacene Batteries45
Secondary Niobium Oxide-Vanadium Oxide Batteries46
Secondary Titanium Oxide-Manganese Oxide Batteries46
Positive Electrode Materials47
Negative Electrode Materials50
Lithium Secondary Battery with Metal Anodes56
References58
Secondary Lithium-Carbon Batteries45
Lithium-Ion Batteries47
Battery Performances54
3 Global Competition of Primary and Secondary Batteries63

Karl Kordesch and Josef Daniel- Ivad

3.1 3.1.1 3.1.2

3.1.3 3 .I . 4 3.1.5

3.2 3.2.1

3.2.2 3.2.3 3.2.4 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.4.5

3.2.4.6 3.2.5 3.3 3.4 3.4.1

Introduction63
Estimate of Battery Market Trends and Expansions. 1995 to 200165
Internationally6
Who BUYS Batteries ?67
The Lithium Primary Market67
Primary Zinc-Air Batteries67
Rechargeable Batteries (Consumer and OEM Markets)68
Ni-Cd Batteries69
Lead-Acid Batteries70
Li Secondary Batteries: Status and Future Projections70
The Advances in Anodes70
Li Cells with Metallic Anodes70
The Advances in Cathodes71
Electrolytes71
Separators72
Competitors Among Li Ion Battery Manufacturers72
Competition from Rechargeable Zinc-Air Batteries72
History and Present Situation73
Progress in Ni-Metal Hydride Batteries69
Li batteries as Power Sources for Electric Vehicles?73

The Small-Format Alkaline Battery Market in the USA and Europe, and Rechargeable Alkaline MnO, - Zn (RAMIM) Batteries ..................................... 73

Contents IX

3.4.2 3.4.3 3.4.4 3.4.5 3.4.5.1 3.4.5.2 3.4.5.3 3.4.5.4 3.4.5.5 3.5 3.6

The Advantages of RAM Batteries74
Typical RAM Applications74
Characteristics of RAM Batteries75
RAM Battery Charging7
Series Charging for OEM Applications79
Power Packs79
RAM Safety81
Summary and Outlook81
References82
External or Internal Chargers7
Solar Panel Charging79

Part 1: Materials for Aqueous Electrolyte Batteries 1

1.1 I . 2 1.2.1 1.2.2 I . 2.3 1.2.4 1.2.5 I . 3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.4 1.4.1 1.4.1.1 1.4.1.2 .4. 1.3 .4. 1.4 . 4.2

. 4.3

. 5 . 6

Structural Chemistry of Manganese Dioxide and Related Compounds85

Jiirg H . Albering

Introduction85
Tunnel Structures86
p . MnO,86
Ramsdellite8
y . MnO, and E . MnO,89
M . MnO,94
Romankchite. Todorokite. and Related Compounds96
Layer Structures98
Mn,O, and Similar Compounds98
Lithioporite101
Chalcophanite102
6 - MnO, materials103 10 A Phyllomanganates of the Buserite Type .................................................... 107
Reduced Manganese Oxides107
Compounds of Composition MnOOH108
Manganite (y - MnOOH)108
Groutite (a - MnOOH)108
6 - MnOOH109
Feitknechtite p - MnOOH109
Spinel-type Compounds Mn,O, and y - Mn,O,109
Pyrochroite, Mn(OH),110
Conclusion110

References ......................................................................................................... 1 10

2 Electrochemistry of Manganese Oxides113

X Contents Akiya Koiawu. Kohei Yumamoto and Masuki Yoshio

2.1 2.2 2.2.1

2.2.2 2.2.3

2.2.3.1 2.2.3.2

2.2.4 2.2.5 2.3 2.3.1

2.3.2 2.3.3

2.4 2.4.1

2.4.2 2.4.3

2.5 2.6

Introduction113
Electrochemical Properties of EMD115
Modification of Discharge Behavior of EMD with Bi(0H)115
Factors Which lnfluence Mn0, Potential115
Surface Condition of MnO,115
Standard Potential of MnO, in I mol L-' KOH118
Discharge Curves and Electrochemical Reactions115
Three Types of Polarization for MnO,118
Discharge Tests for Battery Materials120
Physical Properties and Chemical Composition of EMD123
Effective Volume Measurement124
Conversion of EMD to LiMnO, or LiMnO, for Rechargeable Li Batteries129
Melt-Impregnation (M-I) Method for EMD129
Preparation of LiMn,O, from EMD [25, 271131
Discharge Curves of EMD Alkaline Cells (A and AA Cells)131
References132
Cross-Section of the Pores124
Closed Pores124
Preparation of Li,.,MnO, from EMD [25]130
3 Nickel Hydroxides135

Jumes McBreen

3.1 3.2 3.3 3.3.1 3.3.1.1

3.3.1.2 3.3.1.3

3.3. I . 4 3.3.1.5

3.3.2 3.4

3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5

Introduction135
Nickel Hydroxide Battery Electrodes136
Solid State Chemistry of Nickel Hydroxides137
Hydrous Nickel Oxides137
p - Ni(OH),137
a - Ni(OH),139
/? - NiOOH142
y - NiOOH143
Relevance of Model Compounds to Electrode Materials143
Pyroaurite-Type Nickel Hydroxides144
Electrochemical Reactions145
Overall Reaction and Thermodynamics of the Ni(OH), /NiOOH Couple145
Nature of the Ni(OH), /NiOOH Reaction147
Nickel Oxidation State148
Oxygen Evolution148
Hydrogen Oxidation148

References .......................................................................................................... 149

4 Lead Oxides153

Contents XI Dietrich Berndt

4.2 4.2.1

4.2.2 4.2.3. 4.2.4. 4.2.5. 4.2.6. 4.3 4.3.1 4.3.2 4.3.3 4.3.4.

4.4 4.4. I 4.4.2. 4.4.2.1 4.4.2.2 4.4.2.3 4.4.3 4.5 4.5.1 4.5.2

4.6 4.6.1

Introduction153
Lead / Oxygen Compounds154
Lead Oxide (PbO)154
Minium (Pb.0. )155
Lead Dioxide (PBO. )155
Nonstoichiometric PbO. Phases156
Basic Sulfates156
Physical and Chemical Properties156
The Thermodynamic Situation156
Water Decomposition157
Oxidation of Lead158
The Thermodynamic Situation in Lead-Acid Batteries159
PbO, as Active Material in Lead-Acid Batteries163
Pasted Plates165
Container Formation168
Passivation of Lead by its Oxides169
Disintegration of the Oxide Layer at Open-Circuit Voltage171
Charge Preservation in Negative Electrodes by a PbO Layer171
Ageing Effects172
The Influence of Antimony, Tin, and Phosphoric Acid173
References173
Thermodynamic Data162
Plant6 Plates164
Manufacture of the Active Material165
Tank Formation167
Tubular Plates168
5 Bromine-Storage Materials177

Ch . Fabjan and .I . Drobits

5.1 5.2 5.2.1 5.2.2

5.3 5.3.1

5.3.2 5.3.3 5.3.4 5.4 5.5

Introduction177
Quaternary Ammonium-Polybromide Complexes180
Physical Properties of the Bromine Storage Phase184
Conductivity184
Viscosity and Specific Weight186
Diffusion Coefficients187
State of Aggregation188
Analytical Study of a Battery Charge Cycle188
Possibilities for Bromine Storage179
General Aspects179

Safety. Physiological Aspects, and Recycling .................................................... 189

5.5.1 Safety189
5.5.2 Physiological Aspects191
5.5.3 Recycling191
5.6 References192
6 Metallic Negatives195

XI1 Con tents L . 0 . Binder

6.2 6.3 6.3.1

6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.7.1 6.3.7.2 6.3.7.3 6.3.7.4 6.3.7.5 6.4

Introduction195
Overview195
Battery Anodes (“Negatives”)196
Aluminum196
Cadmium196
Iron197
Lead197
Lithium198
Magnesium198
Zinc199
Zinc Electrodes for “Acidic” (Neutral) Primaries200
Zinc Electrodes for Alkaline Primaries200
Zinc Electrodes for Alkaline Storage Batteries202
Zinc Electrodes for Alkaline “Low-Cost‘‘ Reusables203
Zinc Electrodes for Zinc-Flow Batteries205
References206
7 Metal Hydride Electrodes209

James J . Reilly

7.1 7.1.1

7.1.2 7.1.3 7.2

7.2. I 7.2.2 7.2.2. I 7.2.2.2

7.2.2.3

I . 2.3 7.2.4 7.2.4.1 7.2.4.2 1.2.4.3

Introduction209
Thermodynamics209
Electronic Properties212
Reaction Rules and Predictive Theories212
Metal Hydride-Nickel Batteries212
Alloy Activation214
Preparation of AB, Electrodes216
Effect of Temperature217
Electrode Corrosion and Storage Capacity217
Corrosion and Composition218
Effect of Cerium220
Effect of Cobalt2
Effect of Aluminum2
AB, Electrodes214

Chemical Properties of AB, Hydrides ............................................................... 215

Contents XI11

7.3 AB, Hydride Electrodes225
7.4 XAS Studies of Alloy Electrode Materials227
7.5 Summary227
7.6 References228
Effect of Manganese224
8 Carbons231

7.2.4.4 K . Kinoshita

8 .I 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.4 8.5

Introduction231
Physicochemical Properties of Carbon Materials232
Physical Properties232
Chemical Properties234
Electrochemical Behavior235
Potential235
Conductive Matrix236
Electrochemical Properties238
Electrochemical Oxidation238
Electrocatalysis239
Intercalation242
References243
Concluding Remarks243
9 Separators245

Werner Biihnstedt

9.1 9.1.1 9.1.2 9.1.2.1 9 .I . 2.2 9.1.2.3 9.1.3

9.2 9.2.1

9.2.1.1 9.2.1.2 9.2.1.3 9.2.2 9.2.2.1 9.2.2.2 9.2.2.3 9.2.3

General Principles245
Characterizing Properties246
Backweb. Ribs. and Overall Thickness246
Electrical Resistance248
Battery and Battery Separator Markets250
Separators for Lead-Acid Storage Batteries251
Development History251
Historical Beginnings251
Starter Battery Separators252
Industrial Battery Separators254
Separators for Starter Batteries258
Polyethylene Pocket Separators258
Leaf Separators263
Comparative Evaluation of Starter Battery Separators269
Separators for Industrial Batteries272
Basic Functions of the Separators245

Porosity. Pore Size. and Pore Shape ................................................................... 247

Con tents XIV

9.2.3.1 9.2.3.2

9.2.3.3 9.3

9.3.1 9.3.2 9.3.3 9.3.3.1 9.3.3.2 9.3.4

9.3.4. I 9.3.4.2

9.3.4.3 9.3.4.4 9.3.4.5 9.3.5 9.4

Separators for Traction Batteries272
Separators for Open Stationary Batteries276
Separators for Sealed Lead-Acid Batteries278
Separators for Alkaline Storage Batteries281
General281
Primary Cells282
Nickel-Cadmium Batteries283
Nickel-Metal Hydride Batteries284
Nickel-Zinc Storage Batteries285
Zinc-Manganese Dioxide Secondary Cells285
Zinc-Air Batteries286
Zinc-Bromine Batteries286
Zinc-Silver Oxide Storage Batteries286
Separators Materials for Alkaline Batteries287
References289
Nickel Systems283
Zinc Systems285

Part 1: Materials for Alkali Metal Batteries 1

1.1 . 2 1.2.1 1.2.2 1.2.3 1.2.4

1.2.5 1.2.6

1.3 1.3.1

1.3.2 1.3.3 1.3.3.1 1.3.3.2 1.3.3.3 1.3.4 1.3.5 1.3.5.1 1.3.5.2

for Lithium Batteries293

The Structural Stability of Transition Metal Oxide Insertion Electrodes M . M . Thackeray

Introduction293
Tunnel Structures: MnO, Compounds295
0.15 Li,.a-MnO,296
y - MnO, and Ramsdellite -MnO,297
Orthorhombic Na,.4,Mn0,299
Layered-Structures299
Li-Mn-0 Compounds301
Li,-,MnO,~,,, and Lithiated Derivatives302
Orthorhombic LiMnO,303
Orthorhombic LiFeO,303
a - MnO,295
p - MnO,297
Lithiated Ramsdellite - MnO,298
LiCoO,300
LiNiO,301
LiMnO, from NaMnO,301
Li-V-0 Compounds304
LiVO,304

a - V,O, and its Lithiated Derivatives .............................................................. 304

Contents XV

I .3. 5.3 1.3.5.4 1.4 1.4.1 1.4.2 I .4. 2.1

1.4.2.2 1.4.2.3

1.4.2.4 1.4.2.5

1.4.3 1.4.3.1 1.4.3.2 I . 4.4 1.4.4.1 1.4.5

1.4.5.1 1.5 1.6

Li.., V308305
Framework Structures: The Family of Spinel Compounds307
Li-Mn-0 Spinels309
Li,.V.-nO.-, . H. 0 and Lio.6V2-n0 ,-&306
Fe,O, . Mn,O, and Co.0308
Li[Mn.]O310
Li.Mn.0312
Thin-Film LiMn , 0,313
The Normal Spinel, Li[V,]O,314
The Inverse Spinels, V[LiM]O, (M=Ni Co)315
Li-Co-0 Spinels315
Li[Co,]O, and Li,Co,O, (LT- LiCoO, )315
Li[Ti,]O, and Li,Ti,O,,316
Concluding Remarks317
Li[Mn,.,Ni,.,]O,313
Oxygen-Rich and Oxygen Deficient Spinels, LiMn,04,313
Li-V-0 Spinels314
Li-Ti-0 spinels316
References317
2 Overcharge-Protected Oxide Cathodes323

Tsutomu Ohzuku

2.1 Introduction323
2.2 Candidate Materials for Advanced Lithium Batteries323
Lithium-Ion Batteries326

2.3 Specific Problems in Designing High-Volume, High-Energy, Reliable

Electrolyte326

2.4 Reaction Mechanism of Li,-,NiO, and Its Thermal Behaviour with Organic

Closed Reaction Vessel329
2.6 Characteristic Features of Solid-state Redox Reactions in Li,-,NiO,330
a . LiAlO,332
2.8 An Innovative LiAI,,,Ni,,,O, Insertion Material for Lithium-Ion Batteries3
2.9 Concluding Remarks335
2.10 References336
3 Rechargeable Lithium Anodes339

2.5 Possible Haystack-Type Reaction Associated with Thermal Runaway in a 2.7 Synthesis and Characterization of the Solid Solution of LiNiO, and Jun-ichi Yumuki and Shin-ichi Tobishima

3.1 Introduction339

3.2 Surface of Uncycled Lithium Foil ...................................................................... 341

3.3 3.4 3.4.1 3.5 3.6 3.7 3.8 3.8.1 3.8.2 3.8.2.1

3.8.2.2 3.8.2.3 3.8.3 3.8.4 3.8.5 3.8.6 3.9 3.9.1. 3.9.2. 3.9.2.1 3.9.2.2 3.9.2.3 3.9.2.4 3.9.2.5 3.10 3.1 1

Surface of Lithium Coupled With Electrolytes341
Cycling Efficiency of Lithium Anode342
Measurement Methods342
Reasons for The Decrease in Lithium Cycling Efficiency343
Morphology of Deposited Lithium343
Improvement in the Cycling Efficiency of a Lithium Anode346
Electrolytes346
Electrolyte Additives347
Lithium347
Additives Modifying the State of Solvation of Lithium Ions348
Reactive Additives Used to Make a Better Protective Film348
Stack Pressure on Electrodes351
Composite Lithium Anode352
The Amount of Dead Lithium and Cell Performance345

Stable Additives Limiting Chemical Reaction Between the Electrolyte and

Influence of Cathode on Lithium Surface Film352
An Alternative to the Lithium-Metal Anode (Lithium-Ion Inserted Anodes)352
Safety of Rechargeable Lithium Metal Cells353
Considerations Regarding Cell Safety353
Safety Test Results354
Overcharge354
Nail Penetration354
Heating354
Conclusion354
References355
External Short354
Crush354
4 Lithium Alloy Anodes359

Robert A . Huggins

4.1 4.2 4.3

4.4 4.5

4.6 4.7

4.8 4.8.1

4.8.2 4.8.3 4.9

Introduction359
Problems with the Rechargeability of Elemental Electrodes360
Lithium Alloys as an Alternative361
Alloys Formed in Situ from Convertible Oxides362
Conditions in which Complete Equilibrium can be Assumed363
Kinetic Aspects366
Examples of Lithium Alloy Systems368
Crystallographic Aspects and the Possibility of Selective Equilibrium365
Lithium-Aluminium System368
Lithium-Silicon System368
Lithium-Tin System370

Thermodynamic Basis for Electrode Potentials and Capacities under Lithium Alloys at Lower Temperatures ............................................................. 371

Contents XVIL

4.10 4.1 4.12

The Mixed-Conductor Matrix Concept374
4.13 References379
Solid Electrolyte Matrix Electrode Structures379
What About the Future ?379
5 Lithiaded Carbons383

Martin Winter and Jiirgen Otto Besenhard

5.1 5.1.1 5.1.2 5.2 5.2.1 5.2.2 5.2.2.1 5.2.2.2 5.2.2.3 5.2.3 5.2.4 5.2.5 5.2.6 5.3. 5.4 5.5

Introduction383
Why Lithiated Carbons?385
Electrochemical Formation of Lithiated Carbons386
Carbons: Classification. Synthesis. and Structures387
In-Plane Structures390
Stage Formation391
Reversible and Irreversible Specific Charge392
Li,C, vs . Li, (solv), C,,394
Lithiated Nongraphitic Carbons398
Lithiated Carbons Containing Heteroatoms404
Lithiated Fullerenes405
Lithiated Carbons vs . Competing Anode Materials406
References409
Graphitic and Non Graphitic Carbons386
Lithiated Graphitic Carbons (Li,C. )390
Summary408
6 The Anode/Electrolyte Interface419

E . Peled. D . Golodnitsky and J . Pencier

6.1 6.2 6.2.1 6.2.2 6.2.2.1 6.2.2.2 6.2.2.3 6.2.3

6.3 6.3.1 6.3.2 6.3.3 6.3.4

6.3.5

Introduction419
SEI Formation Chemical Composition. and Morphology420
SEI Formation Processes420
Chemical Composition and Morphology of the SEI422
Ether-Based Liquid Electrolytes422
Carbonate-Based Liquid Electrolyte424
Polymer (PE). Composite Polymer (CPE). and Gelled Electrolytes426
Electrolyte Materials427
SEI Formation on Carbonaceous Electrodes429
Surface Structure and Chemistry of Carbon and Graphite430
The First Intercalation Step in Carbonaceous Anodes432
Parameters Affecting QIR436
Chemical Composition and Morphology of the SEI439

Reactivity of e,, with Electrolyte Components - a Tool for the Selection of Graphite Modification by Mild Oxidation and Chemically Bonded (CB) SEI .. 437

XVllI Contents

6.3.5.1 6.3.5.2

6.3.6 6.4 6.4.1

6.4.2 6.4.3 6.4.3.1 6.4.3.2 6.5 6.6

Carbons and Graphites439
HOPG441
SEl Formation on Alloys443
Models for SEI Electrodes443
Liquid Electrolytes443
Polymer Electrolytes446
LixC, Electrode451
Summary and Conclusions452
References453
Effect of Electrolyte Composition on SEI Properties447
Lithium Electrode447
7 Liquid Nonaqueous Electrolyte457

J . Barthel and H . J . Gores

7.1 7.2

7.2.1 7.2.2

7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3

7.4 7.4.1 7.4.2

7.4.3 7.4.3.1

7.4.3.2 7.4.3.3

7.4.3.4 7.4.3.5

7.4.3.6 7.5

Introduction457
Components of the Liquid Electrolyte458
The Solvents458
The Salts461
Purification of Electrolytes464
Intrinsic Properties465
Chemical Models of Electrolytes465
Ion-Pair Association Constants465
Triple-Ion Association Constants468
Bilateral Triple-Ion Formation468
Unilateral Triple-Ion Formation468
Association471
Bulk Properties473
Electrochemical Stability Range473
Chemical Stability of Electrolytes with Lithium and Lithiated Carbon479
Conductivity of Concentrated Solutions485
Introduction485
Conductivi ty-Determining Parameters486
The Role of Solvent Viscosity, Ionic Radii, and Solvation486
The Role of Ion Association488

Selective Solvation of Ions and Competition Between Solvation and Ion Effects of Selective Solvation and Competition Between Solvation and Ion

Optimization of Conductivity490
Association488
References491
Polymer Electrolytes499

Fiona Gray and Michel Armand

Contents XIX

8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8

8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.4 8.5

Introduction499
Technology501
Solvent-Free Polymer Electrolytes501
The Fundamentals of a Polymer Electrolyte502
Conductivity. Structure. and Morphology503
Second-Generation Polymer Electrolytes504
An Analysis of Ionic Species510
Cation-Transport Properties510
Hybrid Electrolytes512
Gel Electrolytes513
Enhancing Cation Mobility518
Structure and Ionic Motion506
Mechanisms of Ionic Motion507
Batteries516
Mixed-Phase Electrolytes518
Looking to the Future520
References520
9 Solid Electrolytes525

P . Birke and W . Weppner

9.1 9.2 9.2.1 9.2.2 9.3 9.3.1 9.3.2 9.3.3 9.4 9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.1.3 9.5.1.4. 9.5.1.5

9.5.1.6 9.5.2 9.5.2.1 9.5.2.2 9.5.3 9.5.3.1 9.5.3.2

Introduction525
Fundamental Aspects of Solid Electrolytes526
Structural Defects526
Migration and Diffusion of Charge Carriers in Solids531
Applicable Solid Electrolytes for Batteries533
General Aspects533
Lithium-, Sodium-, and Potassium-Ion Conductors536
Preparation of Solid Electrolytes540
Monolithic Samples540
Solid-state Reactions540
The Pechini Method540
Wet Chemical Methods540
Combustion Synthesis and Explosion Methods541
Composites542
Capacity and Energy Density Aspects537
Design Aspects of Solid Electrolytes537
Sintering Processes542
Thick Film Solid Electrolytes542
Screen Printing542
Tape Casting542
Thin-Film Solid Electrolytes543
Sputtering543

Evaporation ......................................................................................................... 543 x Contents

9.5.3.3 9.6

9.6.1 9.6.1.1

9.6.1.2 9.6. I . 3 9.6.2 9.6.2.1 9.6.2.2 9.6.2.3 9.6.2.4

9.6.3 9.6.4

Spin-On Coating and Spay Pyrolysis544

Experimental Techniques for the Determination of the Properties of Solid

Partial Ionic Conductivity544
Electrolytes544
Direct-Current (DC) Measurements544
Impedance Analysis545
Determination of the Activation Energy545
Partial Electronic Conductivity546
Determination of the Transference Number547
The Hebb-Wagner Method547
Mobility of Electrons and Holes548
Concentration of Electrons and Holes549
Stability Window549
Defects550
References551

Determination of the Ionics Conduction Mechanism and Related Types of

10 Separators for Lithium-Ion Batteries553

R . Spotnitz

10.2 10.3

10.4 10.5 10.6 10.7

10.8 10.9

Introduction553
Microporous Separator Materials554
Gel Electrolyte Separators557
Characterization of Separators558
Mathematical Modeling of Separators561
Conclusions562
References562
How a Battery Separator is Used553
Polymer Electrolytes558
1 Materials for High Temperature Batteries565

H . Biihm

1.1 1.2 1 1.2. I 1.2.2 I 1.2.3

1 I . 2.4 1.3 1.3.1 1.3.2 1 1.3.3

Introduction565
The ZEBRA Cell566
Internal Resistance of ZEBRA Cells568
The Na / S System [I 1 ]571
The ZEBRA System566
Properties of ZEBRA Cells567
The ZEBRA Battery569
The Sodium Sulfur Battery571
The Na / S Cell572

The Na / S Battery .............................................................................................. 574

1 1.3.4 Corrosion-Resistant Materials for SodiudSulfur Cells575
1.3.4.1 Glass Seal575
1 1.3.4.2 Cathode and Anode Seal575
1 I .3. 4.3 Current Collector for the Sulfur Electrode576
1 1.4 Components for High-Temperature Batteries576
1 1.4.1 The Ceramic Electrolyte pl’ -Alumina576

Contents XXI

1 1.4.1.2 Manufacture of pl‘ -Alumina Electrolyte Tubes577
1 1.4.1.3 Properties of -Alumina Tubes581
I I .4. 1.4 Stability of p’ -Alumina andp” -Alumina581
1.4.2 The Second Electrolyte NaAlC1, and the NaCl- AlC1, System582
1 1.4.2.1 Phase Diagram582
1 1.4.2.2 Vapor Pressure583
1.4.2.3 Density583
1.4.2.4 Viscosity583
1.4.2.5 Dissociation584
1.4.2.6 Ionic Conductivity584
1.4.3 Nickel Chloride NiCI, [41] and the NiCI, - NaCl System586
1 1.4.3.1 Relevant Properties of NiC1,586
1.4.3.2 NiCI, - NaCl System586
1.4.4 Materials for Thermal Insulation587
1.4.4.1 Multifoil Insulation587
1.4.4.2 Glass Fiber Boards588
1.4.4.3 Microporous Insulation588
1.4.4.4 Comparison of Thermal Insulation Materials589
1.4.5 Data for Cell589
1 1.4.5.1 Nickel [46]589
1 1.4.5.2 Liquid Sodium [47]590
1 1.4.5.3 NaCl [46]590
1.4.5.4 Sulfur and Sodium Polysulfides590
1 1.5 References591
Doping of P, ’ - A1,0,577
I 1.4.2.7 Solubility of Nickel Chloride in Sodium Aluminum Chloride585
List of Symbols593

1 I .4. 1.1 Index ............................................................................................................................ 605

List of Contributors

Albering, Jorg H. (1: 1) Institute for Chemical Technology of Inorganic Materials Graz University of Technology Stremayrgasse 16/I

8010 Graz Austria

Armand, Michel (I:8) Departement de Chimie UniversitC de MontrCal C.P. 6128, Succursale Centre-Ville MontrCal QuCbec H3C 357 Canada

Barthel, J. (1:7) Institut fur Physikalische und Theoretische Chemie der Universitat Regensburg 93040 Regensburg

Germany

Berndt, Dietrich (1:4) Am WeiBen Berg 3 6 1476 Kronberg Germany

Besenhard, Jurgen Otto (1115)

Institute for Chemical Technology of Inorganic Materials Graz University offechnology Stremayrgasse 16/I 8010 Graz Austria

Binder, L. 0. (I:6)

Institute for Chemical Technology of Inorganic Materials

Graz University of Technology Stremayrgasse 161111 8010 Graz Austria

Birke, P. (I:9) Christian-Albrechts University Technical Faculty Chair for Sensors and Solid State Ionics

Kaisestr. 2 24143 Kiel Germany

Bohm, H. (IV) AEG Anglo Batteries GmbH

Soflinger StraBe 100 89077 Ulm Germany

Bohnstedt, Werner (I:9) Daramic, Inc. Erlengang 3 1 22844 Norderstedt Germany

Daniel-had, Josef(k3)

Battery Technologies,Inc. Richmond Hill

Ontario L4B 1C3 Canada

Drobits, J. (115) Institut fur Technische Elektrochemie Technische Universitat Wien Getreidemarkt 9/ 1 58 1060 Wien Austria

XXlV Lisr of Corirributors

Fabjan, Ch. (I:5) Institut fur Technische Elektrochemie

Technische Universitat Wien Getreidemarkt 9/158

1060 Wien Austria

Furukawa, Nobuhiro (1:2) Electrochemistry Department New Materials Research Center

Sanyo Electric Co., Ltd. 1-1 8-1 3 Hashiridani

Hirakata City Osaka 573-8534 Japan

Golodnitsky, D. (1:6) Department of Chemistry

Tel Aviv University Tel Aviv 69978 Israel

Gores, J. (I:7) lnstitut fur Physikalische und Theoretische Chemie der Universitat Regensburg

93040 Regensburg Germany

Gray, Fiona (I:8) School ofchemistry University of St Andrews

The Purdie Building North Haugh

St Andrews Fife KY 16 9ST UK

Hambitzer, Giinther (I: 1) FORTU BAT Batterien GmbH Woschbacherstr. 37 76327 Pfinztal Germany

Hoffmann, D. (1: 10) Hoechst Celanese Corp.

Separations Products Division Charlotte North Carolina 28273 USA

Huggins, Robert A. (II1:4) Technical Faculty Christian- Al brec hts-Universi ty Kaiserstr. 2 24143 Kiel Germany

Kinoshita, K. (I:8) Energy and Environment Division

Lawrence Berkeley Laboratory Berkeley

California 94720 USA

Kozawa, Akiya (IT:2) ITE Battery Research Institute 39 Youke, Ukino Chiaki-cho Ichinomiyashi Aichi-ken 49 1 Japan

Kordesch, Karl (1:3)

Institute for Chemical Technology oflnorganic Materials

Graz University of Technology Stremayrgasse 16/I

80 10 Graz Austria

McBreen, James (K3) Department of Applied Science Brookhaven National Labomtory

Upton New York 1 1973

List of Contributors xxv

Nishio, Koji (I:2) Electrochemistry Department New Materials Research Center Sanyo Electric Co., Ltd. 1-18-13 Hashiridani Hirakata City Osaka 573-8534 Japan

Ohzuku, Tsutomu (I:2) Department of Applied Chemistry Faculty of Engineering

Osaka City University Sugimoto 3-3-138

Sumiyoshi Osaka 558-8585 Japan

Peled, Emanuel (I:6)

Department of Chemistry Tel Aviv University

Tel Aviv 69978 Israel

Penciner, J. (I:6) Department ofchemistry Tel Aviv University Tel Aviv 69978 Israel

Pinkwart, Karsten (I: 1) Institut fur Chemische Technologie

J.-v.-Frauenhofer-Str. 7 76327 Pfinztal Germany

Reilly, James J. (I:7) Department of Applied Science Brookhaven National Laboratory

Upton New York 1 1973

Ripp, Christiane (I: 1) Institut fur Chemische Technologie J.-v.-Frauenhofer-Str. 7 76327 Pfinztal Germany

Schiller, Christian (I: 1) Institut fur Chemische Technologie

J.-v.-Frauenhofer-Str. 7 76327 Pfinztal Germany

Schuster, Peter (1: 5) Institut fur Technische Elektrochemie Technische Universitat Wien Getreidemarkt 9/158

1060 Wien Austria

Shirai, H. (1: 10) Hoechst Celanese Corp. Separations Products Division Charlotte North Carolina 28273 USA

Spotnitz, R. (Ill: 10) Hoechst Celanese Corp. Separations Products Division Charlotte North Carolina 28273 USA

Thackeray, Michael M. (1: 1) Electrochemical Technology Program

Chemical Technology Division Argonne National Laboratory

Argonne Illinois 60439 USA

XXVI List of Contrihurnrs

Tobishima, Shin-ichi (1: 3) NTT Integrated Information &

Energy Systems Laboratories Tokai-mura Ibaraki-ken 3 19-1 1 Japan

Weppner, W. (I11:9) Christian-Albrechts University Technical Faculty Chair for Sensors and Solid State Ionics Kaisestr. 2

24143 Kiel Germany

Winter, Martin (1: 5)

Institute for Chemical Technology of Inorganic Materials Graz University of Technology Stremayrgasse 1 6411 8010 Graz Austria

(Parte 1 de 5)

Comentários