apostila Hidrologia

apostila Hidrologia

(Parte 1 de 5)

IPH UFRGS Maio 2008

Introduzindo hidrologia

Capa: Andreas Collischonn Ilustrações: Fernando Dornelles

Versão 5

Introdução

O estudo da Hidrologia e conceitos fundamentais do ciclo hidrológico.

idrologia é a ciência que trata da água na Terra, sua ocorrênca, circulação, distribuição espacial, suas propriedades físicas e químicas e sua relação com o ambiente, inclusive com os seres vivos. A Hidrologia é o estudo da água na superfície terrestre, no solo e no sub-solo. De uma forma simplificada pode-se dizer que hidrologia tenta responder à pergunta: O que acontece com a água?

A Hidrologia pode ser tanto uma ciência como um ramo da engenharia e tem muitos aspectos em comum com a meteorologia, geologia, geografia, agronomia, engenharia ambiental e a ecologia. A Hidrologia utiliza como base os conhecimentos de hidráulica, física e estatística.

Existem outras ciências que também estudam o comportamento da água em diferentes fases, como a meteorologia, a climatologia, a oceanografia, e a glaciologia. A diferença fundamental é que a Hidrologia estuda os processos do ciclo da água em contato com os continentes.

Hidrologia nas Engenharias

A humanidade tem se ocupado com a água como uma necessidade vital e como uma ameaça potencial pelo menos desde o tempo em que as primeiras civilizações se desenvolveram às margens dos rios. Primitivos engenheiros construíram canais, diques, barragens, condutos subterrâneos e poços ao longo do rio Indus, no Paquistão, dos rios Tigre e Eufrates, na Mesopotâmia, do Hwang Ho na China e do Nilo no Egito, há pelo menos 5000 anos.

Capítulo 1

Hidrologia nas Ciências do Meio Ambiente

O interesse em Ecologia e ciências do meio ambiente pela hidrologia é devido ao papel que esta ciência exerce no estudo dos aspectos físicos que condicionam o meio ambiente.

A limnologia pode ser definida como o estudo ecológico de todas as massas de água continentais, incluindo lagos, lagunas estuários, represas, águas subterrâneas, águas temporárias, banhados e rios (Esteves, 1988). Apesar disso, a maior parte dos estudos de limnologia está focalizada em lagos. A hidrologia, por outro lado, tradicionalmente está mais ligada ao estudo dos rios. Entretanto, os conceitos abordados neste texto aplicam-se tanto a rios como a lagos, e, no caso das análises estatísticas, podem ser aplicadas à vazão como a outras variáveis, como o nível de lagos ou banhados, por exemplo.

Grande parte do estudo da hidrologia foi desenvolvida para avaliar a variabilidade temporal de variáveis importantes do ciclo hidrológico e para projetar obras de engenharia adequadas para minimizar os impactos de manifestações extremas desta variabilidade, como enchentes e longas estiagens. Para a limnologia, por outro lado, a variabilidade temporal das variáveis hidrológicas constitui o pano de fundo em frente ao qual se desenvolvem os ecossistemas, e por isso deve ser mais bem compreendida. Portanto, também para a limnologia esta variabilidade temporal, caracterizada pelo regime hidrológico, é fundamental.

Hidrologia na Engenharia Elétrica

O interesse em Hidrologia na Engenharia Elétrica é devido à utilização da água para a geração de energia. A potência de uma usina hidrelétrica é proporcional ao produto da descarga (ou vazão) pela queda. A queda é definida pela diferença de altitude do nível da água a montante (acima) e a jusante (abaixo) da turbina. A descarga em um rio depende das características da bacia hidrográfica, como o clima, a geologia, os solos, a vegetação.

Em projetos de centrais hidrelétricas os estudos hidrológicos são necessários para:

• Escolha das turbinas adequadas e determinação da potência instalada.

• Análise da variação temporal da disponibilidade de energia.

• Determinação da energia garantida ou firme.

• Estimativa de vazões máximas em eventos extremos para dimensionamento das estruturas extravasoras.

• Otimização da operação de sistemas interligados de geração elétrica que incluem hidrelétricas e termoelétricas.

• Análise das relações entre o uso da água para geração de energia e outros usos, como irrigação, abastecimento urbano, navegação, preservação do meio ambiente e recreação.

No Brasil a geração de energia elétrica está fortemente ligada à hidrologia porque a quase totalidade da energia gerada e consumida é oriunda de usinas hidrelétricas. Considerando os dados da década de 1990, o Brasil é o terceiro maior produtor de energia hidrelétrica do mundo, atrás apenas dos Estados Unidos e do Canadá e a frente da China, da Rússia e da França. Entretanto, a energia hidrelétrica no Brasil corresponde a mais de 97% do total da energia elétrica gerada, enquanto que, na maior parte dos outros países, a energia hidrelétrica corresponde a percentuais muito menores do total, conforme a Tabela 1. 1. Destes países apenas a Noruega apresenta uma dependência semelhante da água no setor de energia, com 9% da energia de origem hidrelétrica. A dependência mundial da energia hidrelétrica é de apenas 20%, conforme pode ser observado na última linha da tabela.

Tabela 1. 1: Os dez países maiores produtores de energia hidrelétrica do mundo e a importância relativa da hidreletricidade na energia total produzida (Gleick, 2000).

País Capacidade

Instalada(MW)

Energia Hidrelétrica produzida (GW.hora/ano)

Percentual da energia total produzida (%)

Mesmo em usinas termelétricas a água tem um papel fundamental e é consumida em quantidades significativas. Neste caso a água é utilizada nos ciclos internos de resfriamento e geração de vapor. Nos Estados Unidos as usinas termelétricas utilizam cerca de 260 bilhões de metros cúbicos por ano, o que corresponde a 47% da utilização total de água neste país. Deve se ressaltar, entretanto, que nem toda esta água é consumida, e grande parte retorna aos rios. Por este motivo, também as usinas termelétricas são construídas junto à fontes abundantes e confiáveis de água, e são necessários estudos hidrológicos para avaliar a sua disponibilidade.

A água

A água é uma substância com características incomuns. É a substância mais presente na superfície do planeta Terra, cobrindo mais de 70% do globo. O corpo humano é composto por água mais ou menos na mesma proporção. Já um tomate é composto por mais de 90 % de água, assim como muitos outros alimentos. Todas as formas de vida necessitam da água para sobreviver. A água é a única substância na Terra naturalmente presente nas formas líquida, sólida e gasosa. A mesma quantidade de água está presente na Terra atualmente como no tempo em que os dinossauros habitavam o planeta, há milhões de anos atrás. A busca de vida em outros planetas está fortemente relacionada a busca de indícios da presença de água.

A estrutura molecular da água (H2O) é responsável por uma característica fundamental da água que é a sua grande inércia térmica, isto é, a temperatura da água varia de forma lenta. O sol aquece as superfícies de terra e de água do planeta com a mesma energia, entretanto as variações de temperatura são muito menores na água. Em função deste aquecimento diferenciado e do papel regularizador dos oceanos, o clima da Terra tem as características que conhecemos.

Comparada com outros líquidos a água também apresenta uma tensão superficial relativamente alta. Esta tensão superficial é responsável pela organização da chuva na forma de gotas e pela ascensão capilar da água nos solos.

Os recursos de água têm determinado o destino de muitas civilizações ao longo da história. Povos entraram em conflito e guerras foram iniciadas em torno de problemas relacionados ao acesso à água. O crescimento da população mundial ao longo do último século tornou criticamente necessária a racionalização do uso da água.

No Brasil a geração de energia elétrica é apenas um dos usos da água, mas sua importância é muito grande, chegando a influenciar fortemente as estimativas do valor associado á água.

A hidrosfera

O termo hidrosfera refere-se a toda a água do mundo, que é estimada em aproximadamente 1,4 quilômetros cúbicos. Cerca de 97 % da água do mundo está nos oceanos. Dos 3% restantes, a metade (1,5% do total) está armazenada na forma de geleiras ou bancadas de gelo nas calotas polares. A água doce de rios, lagos e aqüíferos (reservatórios de água no subsolo) corresponde a menos de 1% do total.

Em valores totais a água doce existente na Terra e a água que atinge a superfície dos continentes na forma de chuva é suficiente para atender todas as necessidades humanas. Entretanto, grandes problemas surgem com a grande variabilidade temporal e espacial da disponibilidade de água. A América do Sul é, de longe, o continente com a maior disponibilidade de água, porém a precipitação que atinge nosso continente é altamente variável, apresentando na Amazônia altíssimas taxas de precipitação enquanto o deserto de Atacama é conhecido como o lugar mais seco do mundo.

No Brasil a disponibilidade de água é grande, porém existem regiões em que há crescentes conflitos em função da quantidade de água, como na região semi-árida do Nordeste. Mesmo no Rio Grande do Sul, onde a disponibilidade de água pode ser considerada alta, ocorrem anos secos em que a vazão de alguns rios não é suficiente para atender as demandas para abastecimento da população e para irrigação.

Tabela 1. 2: A água na Terra (Gleick, 2000).

Percentual água do planeta (%) Percentual da água doce (%)

Oceanos/água salgada 97 Gelo permanente 1,7 69 Água subterrânea 0,76 30

Lagos 0,007 0,26 Umidade do solo 0,001 0,05 Água atmosférica 0,001 0,04 Banhados 0,0008 0,03 Rios 0,0002 0,006 Biota 0,0001 0,003

O ciclo hidrológico

O ciclo hidrológico é o conceito central da hidrologia. O ciclo hidrológico está ilustrado na Figura 1. 1. A energia do sol resulta no aquecimento do ar, do solo e da água superficial e resulta na evaporação da água e no movimento das massas de ar. O vapor de ar é transportado pelo ar e pode condensar no ar formando nuvens. Em circunstâncias específicas o vapor do ar condensado nas nuvens pode voltar à superfície da Terra na forma de precipitação. A evaporação dos oceanos é a maior fonte de vapor para a atmosfera e para a posterior precipitação, mas a evaporação de

Os processos do ciclo hidrológico são: precipitação; infiltração; escoamento; evapotranspiração e condensação.

água dos solos, dos rios e lagos e a transpiração da vegetação também contribuem. A precipitação que atinge a superfície pode infiltrar no solo ou escoar por sobre o solo até atingir um curso d’água. A água que infiltra umedece o solo, alimenta os aqüíferos e cria o fluxo de água subterrânea.

O ciclo hidrológico é fechado se considerado em escala global. Em escala regional podem existir alguns sub-ciclos. Por exemplo, a água precipitada que está escoando em um rio pode evaporar, condensar e novamente precipitar antes de retornar ao oceano.

A água também sofre alterações de qualidade ao longo das diferentes fases do ciclo hidrológico. A água salgada do mar é transformada em água doce pelo processo de evaporação. A água doce que infiltra no solo dissolve os sais aí encontrados e a água que escoa pelos rios carrega estes sais para os oceanos, bem como um grande número de outras substâncias dissolvidas e em suspensão.

Figura 1. 1: O ciclo hidrológico.

A energia que movimenta o ciclo hidrológico é fornecida pelo sol.

Bacia hidrográfica e balanço hídrico

ciclo hidrológico é normalmente estudado com maior interesse na fase terrestre, onde o elemento fundamental da análise é a bacia hidrográfica. A bacia hidrográfica é a área de captação natural dos fluxos de água originados a partir da precipitação, que faz convergir os escoamentos para um único ponto de saída, seu exutório. A definição de uma bacia hidrográfica requer a definição de um curso d’água, de um ponto ou seção de referência ao longo deste curso d’água e de informações sobre o relevo da região.

Uma bacia hidrográfica pode ser dividida em sub-bacias e cada uma das sub-bacias pode ser considerada uma bacia hidrográfica.

A bacia hidrográfica pode ser considerada como um sistema físico sujeito a entradas de água (eventos de precipitação) que gera saídas de água (escoamento e evapotranspiração). A bacia hidrográfica transforma uma entrada concentrada no tempo (precipitação) em uma saída relativamente distribuída na tempo (escoamento).

As características fundamentais de uma bacia que dependem do relevo são:

• Comprimento da drenagem principal

• Declividade

A área é um dado fundamental para definir a potencialidade hídrica de uma bacia, uma vez que a bacia é a região de captação da água da chuva. Assim, a área da bacia multiplicada pela lâmina precipitada ao longo de um intervalo de tempo define o volume de água recebido ao longo deste intervalo de tempo. A área de uma bacia hidrográfica pode ser estimada a partir da delimitação dos divisores da bacia em um mapa topográfico.

Capítulo 2

Um exemplo de bacia delimitada é apresentado na Figura 2. 1. A bacia delimitada corresponde à bacia do Arroio Quilombo, próximo a Lomba Grande e Novo Hamburgo, até a seção que corresponde a ponte da estrada vicinal indicada no mapa. O divisor de águas apresentado como uma linha pontilhada separa as regiões do mapa em que a água da chuva vai escoar até a seção da ponte das regiões em que a água da chuva não vai escoar até esta seção. O divisor de águas passa, em geral, pelas regiões mais elevadas do entorno do Arroio Quilombo e de seus afluentes, mas não necessariamente inclui os pontos mais elevados do terreno. O divisor de águas intercepta a rede de drenagem em apenas um ponto, que corresponde ao exutório da bacia (no exemplo é a seção da ponte).

Figura 2. 1: Exemplo de uma bacia hidrográfica delimitada sobre um mapa topográfico.

A área da bacia pode ser medida através de um instrumento denominado planímetro ou utilizando representações digitais da bacia em CAD ou em Sistemas de Informação Geográfica.

O comprimento da drenagem principal é uma característica fundamental da bacia hidrográfica porque está relacionado ao tempo de viagem da água ao longo de todo o sistema. O tempo de viagem da gota de água da chuva que atinge a região mais remota da bacia até o momento em que atinge o exutório é chamado de tempo de concentração da bacia.

A declividade média da bacia e do curso d’água principal também são características que afetam diretamente o tempo de viagem da água ao longo do sistema. O tempo de concentração de uma bacia diminui com o aumento da declividade.

A equação de Kirpich, apresentada abaixo, pode ser utilizada para estimativa do tempo de concentração de pequenas bacias:

onde tc é o tempo de concentração em minutos; L é o comprimento do curso d’água principal em km; e ∆h é a diferença de altitude em metros ao longo do curso d’água principal.

Outras características importantes da bacia

Os tipos de solos, a geologia, a vegetação e o uso do solo são outras características importantes da bacia hidrográfica que não estão diretamente relacionadas ao relevo. Os tipos de solos e a geologia vão determinar em grande parte a quantidade de água precipitada que vai infiltrar no solo e a quantidade que vai escoar superficialmente. A vegetação tem um efeito muito grande sobre a formação do escoamento superficial e sobre a evapotranspiração. O uso do solo pode alterar as características naturais, modificando as quantidades de água que infiltram, que escoam e que evaporam, alterando o comportamento hidrológico de uma bacia.

(Parte 1 de 5)

Comentários