Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Complementaridade e Observador na Mecânica Quântica: Interferência de Elétrons e Luz, Notas de aula de Física

Neste documento, aprenda sobre o experimento de fenda dupla com elétrons e a interferência destes partículas. Discutiremos o papel do observador na mecânica quântica, o desaparecimento do padrão de interferência de elétrons quando observados por fótons, e o conceito de fótons. Além disso, analisaremos o princípio da complementaridade e o papel do observador na mecânica quântica.

Tipologia: Notas de aula

2010

Compartilhado em 31/03/2010

andre-rodrigues-prado-8
andre-rodrigues-prado-8 🇧🇷

5 documentos

Pré-visualização parcial do texto

Baixe Complementaridade e Observador na Mecânica Quântica: Interferência de Elétrons e Luz e outras Notas de aula em PDF para Física, somente na Docsity! ob je tiv os 3AULA Pré-requisitos Metas da aula O Princípio da Complementaridade e o papel do observador na Mecânica Quântica Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes é observada por partículas de luz (fótons), e discutir o Princípio da Complementaridade e o papel do observador na Mecânica Quântica. • analisar o desaparecimento do padrão de interferência de elétrons, quando tentamos observá-los com fótons; • rever o conceito de fótons, as partículas de luz; • discutir o Princípio da Complementaridade; • discutir o papel do observador na Mecânica Quântica. Para uma melhor compreensão desta aula, é importante que você revise: fótons e dualidade onda-partícula (Aula 8 de Física 4B); ondas de matéria e o comprimento de onda de de Broglie (Aula 9 de Física 4B). 32 C E D E R J Introdução à Mecânica Quântica | O Princípio da Complementaridade e o papel do observador na Mecânica Quântica C E D E R J 33 A U LA 3 M Ó D U LO 1 ATIVIDADE OBSERVANDO OS ELÉTRONS Como prometemos na Aula 2, vamos agora modifi car um pouco nosso experimento para tentar observar os elétrons. Atrás da parede com fenda dupla, introduzimos uma fonte de luz muito brilhante, como mostra a Figura 3.1. Sabemos que os elétrons espalham a luz, de maneira que veremos um fl ash luminoso toda vez que um elétron passar próximo à fonte de luz. Se o fl ash estiver vindo das proximidades do buraco 2, como por exemplo do ponto A da Figura 3.1, saberemos que o elétron passou pelo buraco 2. Idem para o buraco 1. Se virmos fl ashes simultâneos vindos das proximidades dos dois buracos, poderemos concluir que o elétron se dividiu em dois. Parece simples, vamos então fazer o experimento! Figura 3.1: Esquema do experi- mento de fenda dupla com elétrons sendo observados por fótons. As probabilidades P´1 e P´2 correspondem às situações nas quais apenas os buracos 1 ou 2 estão abertos, respec- tivamente. Já a probabilidade P´12 corresponde à situação em que os dois buracos estão abertos simultanemente. 1. Vamos voltar ao nosso experimento virtual da fenda dupla descrito na Aula 2. Ajuste as condições do experimento de forma idêntica ao que foi feito na Atividade 1 da Aula 2, com uma única diferença: ajuste a lâmpada, para que ela tenha uma intensidade máxima (100%) e um comprimento de onda de 380nm (cor azul). Execute o experimento com a lâmpada ligada. O que você observa? _____________________________________________________________ _____________________________________________________________ ____________________________________________________________ Fonte de elétrons Detetor deslocável Fonte de luz Anteparo A x x P´12 P´1 P´2 34 C E D E R J Introdução à Mecânica Quântica | O Princípio da Complementaridade e o papel do observador na Mecânica Quântica C E D E R J 35 A U LA 3 M Ó D U LO 1 A difi culdade essencial é que, ao reduzirmos a intensidade da luz, não reduzimos a “intensidade” de cada fóton ou, de forma mais precisa, a energia que ele transporta. Apenas reduzimos o número de fótons. Como é possível reduzir a energia de cada fóton? Como vimos na Aula 8 de Física 4B, uma das primeiras hipóteses da teoria quântica diz que a energia de cada fóton é proporcional à freqüência da onda associada a ele: E = hν, (2.1) onde ν é a frequência da luz e h é a constante de Planck. Por exemplo, fótons de luz vermelha (freqüência menor) têm energia menor do que fótons de luz azul (freqüência maior). Eis então uma saída possível para o nosso enigma: em vez de diminuirmos a intensidade da luz, vamos mudar sua cor. Assim, os fótons terão energia e momento linear menores e vão dar “empurrões” menores nos elétrons. Quem sabe poderemos chegar a uma situação em que os elétrons poderão ser vistos e, ainda assim, mostrar interferência? Voltamos ao laboratório. Fazemos o experimento. Iniciamos com luz de alta freqüência (pequeno comprimento de onda): como antes, enxergamos os elétrons passar pelos buracos 1 ou 2, mas não há interferência. Vamos, gradualmente, diminuindo a freqüência da luz (aumentando seu comprimento de onda) até um certo ponto em que ATIVIDADE 2. Verifi que, no experimento virtual, o fenômeno que acabamos de discutir. Para isso, reduza a intensidade da luz para 50% e execute o experimento novamente. ___________________________________________________________ ___________________________________________________________ ____________________________________________________________ RESPOSTA COMENTADA Você verá que o padrão observado na tela parece ser uma mistura dos padrões com interferência e sem interferência. Isso corresponde exatamente ao que discutimos anteriormente, ou seja, elétrons que são observados não interferem, enquanto os elétrons que não são observados interferem. 36 C E D E R J Introdução à Mecânica Quântica | O Princípio da Complementaridade e o papel do observador na Mecânica Quântica C E D E R J 37 A U LA 3 M Ó D U LO 1 recuperamos o padrão de interferência. Tudo parece funcionar bem. Mas quando olhamos agora para os flashes, temos uma surpresa desagradável. Continuamos a vê-los, mas eles agora estão maiores, mais difusos, como grandes borrões. Tão grandes que não conseguimos dizer se vêm da região do buraco 1 ou do buraco 2! Ou seja, ao tentarmos usar fótons de baixa energia, de modo que eles não atrapalhem o movimento dos elétrons, esses fótons não permitem uma definição da trajetória do elétron. Desistimos... O que aconteceu? Na verdade, este é um efeito familiar da ótica. Se temos dois objetos muito próximos, eles só são distinguíveis entre si se forem observados com uma luz de comprimento de onda menor que a distância entre eles. Caso contrário, os dois objetos aparecerão juntos, como um borrão, sem que possamos distingui-los. Diz-se, então, que não temos resolução para identificar os dois objetos separadamente. Esta é a razão fundamental pela qual os microscópicos óticos têm um poder de aumento limitado. Não importa o quão poderoso seja o sistema de lentes destes aparelhos, sua capacidade de amplificação está fundamentalmente limitada pelo comprimento da luz visível, ou seja, não é possível distinguir objetos ou características menores que este comprimento de onda. Mas você já deve ter ouvido falar que os microscópios eletrônicos têm maior poder de aumento que os microscópios óticos, certo? E agora você pode entender como isto ocorre. Como estamos percebendo, os elétrons se comportam como ondas, e essas ondas podem ter comprimento de onda muito menor que o da luz visível, permitindo que possamos “enxergar” objetos muito menores com essas ondas eletrônicas. O PRINCÍPIO DA COMPLEMENTARIDADE E O PAPEL DO OBSERVADOR NA MECÂNICA QUÂNTICA As conclusões finais do nosso experimento são as seguintes: 1. Elétrons são descritos por funções de onda ψ que fornecem a amplitude de probabilidade de que certos eventos aconteçam. A probabilidade é dada pelo módulo quadrado da função de onda: . 2. Quando um evento pode ocorrer de duas formas distintas, a função de onda é dada pela soma das funções de onda correspondentes a cada uma das possibilidades: , e a probabilidade é dada por . Portanto, há interferência. P = ψ 2 ψ ψ ψ= +1 2 P = +ψ ψ1 2 2 36 C E D E R J Introdução à Mecânica Quântica | O Princípio da Complementaridade e o papel do observador na Mecânica Quântica C E D E R J 37 A U LA 3 M Ó D U LO 1 3. Quando fazemos uma medida que permita determinar de qual das duas maneiras o evento ocorreu, perdemos a interferência, e a probabilidade é dada por . Esta última conclusão merece uma discussão mais profunda. Você se lembra de que falamos sobre a dualidade onda-partícula, isto é, que os objetos quânticos apresentavam características tanto de partículas como de ondas? Pois bem, há um outro princípio quântico relacionado a este conceito: o Princípio da Complementaridade, enunciado pela primeira vez pelo físico dinamarquês Niels Bohr. Segundo ele, as características de onda e partícula são complementares e nunca se manifestam simultaneamente, ou seja, se fizermos um experimento no qual fique claramente caracterizada a natureza ondulatória de um objeto quântico, suas características de partícula não irão se manifestar; e vice- versa. No caso da experiência da fenda dupla, assim que conseguimos determinar a trajetória (um conceito típico das partículas) do elétron, o padrão de interferências (um conceito típico das ondas) desapareceu completamente. Toda esta discussão traz consigo aspectos interessantes no que se refere ao papel do observador na Mecânica Quântica. Ao observarmos a trajetória do elétron, destruímos sua natureza ondulatória. Na Física clássica, sempre imaginamos o “observador”, isto é, a pessoa que realiza o experimento, como um ente passivo, que não interfere com o objeto de medida. É assim, por exemplo, quando observamos as estrelas no céu: elas não alteram seu movimento por causa de nossa observação. Porém, na Mecânica Quântica, o observador adquire um papel “ativo” e fundamental para a teoria. Torna-se impossível realizar uma medida sem interferir com o objeto que estamos medindo. A medição destrói a interferência quântica, causando o chamado “colapso da função de onda”. Assim, o efeito de observar o estado do sistema faz, como conseqüência, que esse estado seja alterado. É importante enfatizar que isso ocorre não apenas no caso do elétron passando pela fenda dupla, mas com todos os sistemas quânticos. Dessa forma, na Física Quântica, a distinção entre observador e observado deixa de ser clara; deve-se considerar que o observador é também um sistema físico que interage com o objeto de medida. P P P= +1 2
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved